The status of the black bream Acanthopagrus butcheri (Pisces: Sparidae) population in Lake Clifton, south-western Australia

K A Smith & J Norriss

Department of Fisheries, P.O. Box 21, North Beach, 6020, Australia.
Corresponding author:
kim.smith@fish.wa.gov.au

Manuscript received August 2010; accepted December 2010

Abstract

Lake Clifton hosts the largest living, non-marine thrombolite (microbialite) reef in the southern hemisphere. The thrombolite reef was recently listed as a critically endangered ecological community. The main threat to the ecology of the lake is increasing salinity, but other threats have also been identified, including the impact of the introduced fish Acanthopagrus butcheri (Munro, 1949). Samples opportunistically collected after a fish kill in 2007 indicated that A. butcheri in this lake experienced very low somatic growth and recruitment failure between 1995 and 2007, probably in response to hypersalinity. The evidence suggests that the A. butcheri population in Lake Clifton is effectively extinct. The proposed conservation strategy for Lake Clifton addresses a range of identified threats, including the eradication of A. butcheri. However, management action in response to this particular threat may no longer be required. The abundance of A. butcheri in the lake is probably very low and the population is likely to become extinct if current environmental trends continue. A dramatic reduction in growth rate after 1995 demonstrates the extraordinary growth plasticity of A. butcheri in response to environmental influences.

Keywords: salinity, fish kill, growth, Sparidae, thrombolite

Introduction

Lake Clifton is a small, permanently closed, coastal lake on the south-west coast of Western Australia, approximately 100 km south of Perth (lat/long S32.745°, E115.655°). The lake is part of the Peel/Yalgorup system, which was recognised as a ‘Wetland of International Importance’ under the Ramsar Convention in 1990. The presence of a unique thrombolite (microbialite) community in Lake Clifton was a key factor contributing to this listing. In December 2009, the thrombolites in Lake Clifton were listed as a ‘critically endangered ecological community’ under the Australian Commonwealth Environment Protection and Biodiversity Conservation (EPBC) Act 1999. Rising salinity in the lake, due to the inflow of increasingly saline groundwater, was identified as the greatest threat to the thrombolite community (Threatened Species Scientific Committee 2010a).

Lake Clifton was hyposaline (salinity range 8–32 gL\(^{-1}\)) in the 1970s and 1980s but has become progressively more saline since 1992 and is now frequently hypersaline (Knott et al. 2003; Luu et al. 2004; Smith et al. 2010). Since 2002, annual salinity has typically ranged from a minimum of 20–30 gL\(^{-1}\) in winter to a maximum of 70–80 gL\(^{-1}\) in autumn (John et al. 2009; Smith et al. 2010). Lake Clifton receives low surface flow and so the salinity of the lake is mainly a function of groundwater inflow and evaporation (Commander 1988; Davies & Lane 1996). Thrombolites in Lake Clifton have historically formed as a result of the growth of cyanobacteria Scytonema sp., which are dependant on a constant discharge of fresh to brackish groundwater directly into their habitat (Moore 1987). Hence, a shift from permanently hyposaline to permanently hypersaline conditions threatens the survival of the key microbial species responsible for thrombolite formation.

In addition to increasing salinity, a range of other threats to the thrombolite community in Lake Clifton have been identified, including physical damage to the thrombolites during feeding by Acanthopagrus butcheri (Munro 1949) (Threatened Species Scientific Committee 2010a). Predation by A. butcheri has also been suggested as a factor contributing to a decline in the diversity of macroinvertebrate fauna within the lake (Threatened Species Scientific Committee 2010a). The “control and eradication of black bream”, which were stocked into the lake, is one of several Priority Actions proposed to aid the conservation of the thrombolite community (Threatened Species Scientific Committee 2010b). This action was proposed in the absence of any survey to assess the current status of the A. butcheri population.

Acanthopagrus butcheri is the largest fish species reported from Lake Clifton. This euryhaline species occurs in estuaries and coastal lakes across southern Australia and is highly targeted by recreational fishers across this range (Kailola et al. 1993). Anecdotal reports indicate that this species was first introduced to the lake by commercial fishers in 1947 and possibly re-stocked on several subsequent occasions (Dortch 2008; Dortch unpubl. data). Anecdotal reports and genetic evidence indicate the most likely sources of introduced fish are the adjacent estuaries of Peel-Harvey and Leschenault Inlet (Chaplin et al. 1998; Dortch 2008).

The population of A. butcheri in Lake Clifton was ‘rediscovered’ in 1996 by recreational anglers who were fishing from a boardwalk recently constructed as a
viewing platform for thrombolites. After a 2-week period of intense recreational fishing, the Department of Fisheries implemented a permanent ban on fishing in the lake. The ban was intended to protect the fish (initially thought to be an endemic population) and to prevent accidental damage to the thrombolites.

Prior to this study, information about the status of the A. butcheri population in Lake Clifton was derived from a sample of 100 individuals collected in November 2006 (Sarre & Potter 2000). In February 2007 a fish kill resulting in the deaths of hundreds of individual A. butcheri created an unexpected opportunity to collect additional samples and reassess this population.

Methods

The fish kill was first reported by members of the public on 13 February 2007. Dead fish were observed floating in shallow water around the thrombolites along the north eastern shore. Dead fish had apparently accumulated in this region as a result of a prevailing south-westerly wind. The total number of dead fish in this area were estimated to be 600–800 (A. Kidd (DEC), pers. comm.).

On 15 February 2007 a random sample of 163 partly decomposed fish was collected from a 100 m length of shoreline adjacent to the thrombolite viewing platform along the north eastern shore. The total length (TL) of each fish was measured to the nearest millimetre. Other biological data such as weight or sex was unobtainable from each fish due to the advanced state of decomposition.

Sagittal otoliths were extracted from 100 fish. A transverse section of 300 μm thickness was taken through the core of one otolith from each fish. Sections were viewed with reflected light against a black background. Age was determined by enumeration of opaque and translucent zones, which are deposited annually in A. butcheri otoliths (Morison et al. 1998). Opaque zones in A. butcheri otoliths are typically deposited during spring (Sarre & Potter 2000). The first complete annual ‘increment’ was defined as an opaque core followed by a translucent zone plus an opaque zone. Subsequent increments were defined as a translucent zone plus an opaque zone. Each otolith was assigned one of the following margin categories: 1=translucent margin, marginal increment <50% complete; 2=translucent margin, marginal increment >50% complete; 3=opaque margin. All otoliths were read once by an experienced reader and once by a second experienced reader. There was 100% agreement between these readings.

In south-western Australian estuaries, A. butcheri typically spawn between October and December (Sarre & Potter 1999). Therefore, an average birth date of 1 November was assigned to all fish collected from Lake Clifton in 2007.

Results and Discussion

High salinity and low oxygen have been suggested as factors contributing to the sudden mortality of black bream in Lake Clifton in February 2007 (John et al. 2009). Oxygen and salinity are infrequently monitored in Lake Clifton and levels immediately prior to the fish kill were not available. However, salinity measured shortly after the kill, in February 2007, was 79 gL⁻¹ (John et al. 2009). This is approaching the upper salinity tolerance for A. butcheri and likely to result in osmotic stress (Partridge & Jenkins, 2002; Hoeksema et al. 2006). However, high salinity does not appear to have been the primary cause of death in 2007. A period of increasing salinity, eventually reaching a lethal level, would be expected to result in an extended period of stress and probably also a protracted period of mortality. The fins and skin of dead fish were intact and did not show signs of external lesions, disease or injuries that are often seen on fish that have been subjected to a long period of extreme osmotic stress (Hoeksema et al. 2006). The external condition of the fish suggested that death occurred relatively rapidly. Also, all fish were at a similar stage of decomposition, suggesting that they had died at approximately the same time.

The fish kill coincided with the sudden, widespread dislodgement of large benthic microbial mats in the lake (John et al. 2009). Dead fish and pieces of microbial mats, up to 50 cm in diameter, were observed floating together among the thrombolites. The decomposition of these mats may have created hypoxic zones and led to the sudden asphyxiation of fish. Hence, asphyxia was likely to be the primary cause of death in Lake Clifton in February 2007.

The total lengths of dead A. butcheri collected from Lake Clifton in February 2007 ranged from 235 to 328 mm, with an average length of 271 + 14 (+ s.d.) mm. All fish were estimated to be 11 years old and therefore spawned in late 1995.

The mean length-at-age of fish collected in 2007 was substantially lower than that predicted by von Bertalanffy growth parameters derived from fish collected from Lake Clifton in 1996 (429 mm TL at 11 years of age) (Sarre & Potter 2000) (Fig. 1). In 1996, the A. butcheri population in Lake Clifton exhibited a relatively fast growth rate, which was significantly higher than growth measured in three other south-western Australian estuaries (Moore River, Walpole/Nornalup Inlet, Wellstead Estuary) and slightly higher than growth...
measured in the Swan Estuary (approximately 90 km to the north of Lake Clifton) (Sarre & Potter 2000). The magnitude of the decline in growth in Lake Clifton between 1996 and 2007 indicated that all of the fish collected in 2007 had experienced slow growth over numerous years. Overall, these observations suggest that environmental conditions in Lake Clifton were relatively favourable to the growth of A. butcheri prior to 1996 but were unfavourable after 1996.

Previous observations of differences in growth rates among estuaries have provided evidence of the plasticity of growth by A. butcheri (Sarre & Potter 2000). These differences are environmentally driven and do not reflect genetic differences between populations (Partridge et al. 2004). The decline in growth of A. butcheri in Lake Clifton between 1996 and 2007 further demonstrates the extraordinary growth plasticity of this species in response to environmental factors.

Acanthopagrus butcheri can tolerate a wide range of salinities, from 0 to at least 60 gL\(^{-1}\). Juveniles and adults typically display signs of osmotic stress, including reduced growth, external lesions and mortality at salinities above 60 gL\(^{-1}\), although adult fish have been observed in the wild at salinities of up to 114 gL\(^{-1}\) (Partridge & Jenkins 2002; Hoeksema et al. 2006). The extremely slow growth of A. butcheri collected from Lake Clifton in 2007 suggests that these individuals may have experienced prolonged periods of osmotic stress and spent a substantial part of their life at salinities above 60 gL\(^{-1}\).

Other factors could also have potentially affected the growth rate of A. butcheri in Lake Clifton. In particular, increased salinity may have altered the composition of the invertebrate community in the lake, forcing a change in the diet of A. butcheri. However, the stomach contents of fish sampled in 1996 were dominated (40% by volume) by Capitella capitata (Polychaeta), which was abundant in Lake Clifton sediments in the late 1990s (Sarre et al. 2000; Konishi et al. 2001). Capitella capitata is extremely euryhaline (Geddes & Butler 1984) and is likely to have remained abundant despite recent hypersalinity. Therefore, the dominant prey item consumed by A. butcheri was probably relatively constant from 1996 to 2007 and a dietary shift is unlikely to have caused the decline in growth.

In addition to effects on growth, recent environmental conditions in Lake Clifton appear to have also negatively impacted on the reproductive output of A. butcheri. A sample of 100 A. butcheri collected from the lake in 1996 included ten age classes ranging from 1 to 19 years (Sarre 1999). This suggested that spawning had occurred in at least 10 of the years from 1977 to 1995. In 2007, the absence of all year classes except 1995 suggests limited or zero recruitment in 1996 and all subsequent years.

It is unlikely that many of the fish captured in 1996 were introduced (i.e. spawned elsewhere and translocated to Lake Clifton). In 1996, anglers removed many hundreds of large bream from the lake. Also, anecdotal reports from fishers indicate that some fishing had been occurring for several years prior to 1996. Even after this population depletion, numerous large fish were still available to be captured by Sarre (1999). These high catch rates, occurring after the effects of fishing and natural mortality, imply a high initial abundance of each age class. This would have required substantial quantities of fish to be stocked into the lake each year. A more likely mechanism is natural recruitment. Hence, the majority of the fish collected in 1996 and in 2007 were probably spawned in Lake Clifton and were the descendants of a small number of introduced fish.

Reproduction by A. butcheri (as measured by sperm motility, egg fertilization, egg survival and larval development) can occur at salinities of 10–35 gL\(^{-1}\) but, within this range, is most successful at salinities of 20–35 gL\(^{-1}\) (Haddy & Pankhurst 2000). This optimal range reflects the salinities at which A. butcheri typically spawns in the wild (Nicholson et al. 2008). The potential of A. butcheri to reproduce successfully at salinities above seawater has not been examined. However, in the congenere Acanthopsgrus berda, sperm motility occurs over a wide salinity range (5–40 gL\(^{-1}\)) but peaks sharply at approximately 25–35 gL\(^{-1}\) (Molini & Sheaves 2001). In another euryhaline sparid, Sparus sarba, hatching of viable larvae is limited to salinities of 9–54 gL\(^{-1}\) but highest rates occur between 20–36 gL\(^{-1}\) (Mihelakakis & Kitajima 1994). The optimal salinity ranges for these species correspond to the salinities at which they typically spawn in the wild. Therefore, it is likely that reproductive success of A. butcheri declines rapidly as salinity increases beyond 35 gL\(^{-1}\) and is limited to salinities well below 60 gL\(^{-1}\).

Despite substantial penalties for unlawful translocations of fish, introductions of non-endemic A. butcheri into inland lakes is a widespread problem in south-western Australia, with various potential ecological, social and economic impacts (e.g. Smith et al. 2009). Most recently, a population of A. butcheri was discovered in Lake Thetis, another inland lake containing a significant benthic microbial community (Grey et al. 1990; N. Casson [DEC] pers. comm.). Acanthopagrus butcheri in Lake Thetis were discovered during a fish kill in February 2010. The salinity of Lake Thetis is typically hypersaline and was approximately 57 gL\(^{-1}\) during the fish kill (K. Smith unpubl. data). As with Lake Clifton, this discovery generated concerns about the potential impacts to microbialites and whether management action should be taken. Improved knowledge of the upper salinity limits for reproduction, growth and survival by A. butcheri would assist in determining the need for management action in such cases.

In summary, the environmental conditions in Lake Clifton since 1995 appear to have been highly unfavourable for both growth and reproduction of A. butcheri. High salinity is likely to be the primary factor contributing to slow growth and recruitment failure. Given that salinity is predicted to remain high, and possibly increase, it appears unlikely that any surviving A. butcheri in the lake will successfully breed again.

The proposed conservation strategy for Lake Clifton aims to address a range of identified threats to thrombolites, including the eradication of the introduced A. butcheri population (Threatened Species Scientific Committee 2010b). However, management action in response to this particular threat may no longer be required. The abundance of A. butcheri in the lake is probably very low and the population is likely to become extinct if current environmental trends continue.
Acknowledgements: This manuscript was much improved by suggestions made by B. Molony and 2 anonymous reviewers.

References

Smith M D, Goater S E, Reichwaldt E S, Knott B & Ghoudouani A 2010 Effects of recent increases in salinity and nutrient concentrations on the microbialite community of Lake Clifton (Western Australia): are the thrombolites at risk? Hydrobiologia 649: 207–216.

Benthic algae and seagrasses of the Walpole and Nornalup Inlets Marine Park, Western Australia

J M Huisman¹,², A J Kendrick³ & M J Rule³

¹ Western Australian Herbarium, Science Division, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, WA 6983
² School of Biological Sciences & Biotechnology, Murdoch University, Murdoch, WA 6150
³ Marine Science Program, Department of Environment & Conservation, Kensington, WA 6151

Manuscript received August 2010; accepted December 2010

Abstract

A survey of the marine plants of the Walpole and Nornalup Inlets Marine Park has recorded 49 species of marine benthic algae and seagrasses, including 15 green algae, 11 brown algae, 18 red algae, 4 seagrasses, and one cyanobacterium, representing a substantial increase on the 14 previously recorded species. Most species are relatively common elements of the south-western Australian marine flora, but several are of taxonomic or biogeographic and ecological interest. Included in this group are: a new species of the green algal genus Codium, the first records of previously unknown reproductive phases in the red algae Mazoyerella australis and Spermothamnion cymosum, and a new distribution record for Ossiella pacifica, a species hitherto known only from warmer waters of the Pacific Ocean and not recorded for mainland Australia. The species diversity in the inlets decreases markedly with increasing distance from the ocean, reflecting a reducing marine and increasing estuarine influence.

Keywords: algae, benthic, Codium, Mazoyerella, Nornalup, Ossiella, range extensions, Spermothamnion, Walpole

Introduction

The estuaries of Western Australia’s (WA) south provide important highly productive and sheltered aquatic habitats on an otherwise typically high energy stretch of coast (Brearley 2005). While the physical conditions of estuaries vary widely due to the mixing of marine and fresh waters, the wave-dominated estuaries of southern WA vary also with regard to their underlying geomorphology, rainfall characteristics and frequency and duration of times at which they remain open to the ocean (Hodgkin & Hesp 1998; Chuwen et al. 2009). While systems in relatively high rainfall areas tend to be permanently or seasonally open to the ocean, those in the drier east of WA’s south coast have longer periods of closure.

Estuaries typically accumulate terrestrially-derived sediments and nutrients in their lower basins, and for this reason they may support particularly high densities of some organisms such as invertebrates and fishes (Edgar 2001). However, as relatively few species can persistently tolerate the highly variable environmental conditions associated with, for example, seasonal freshwater flows and periods of bar closure, the number of true estuarine species is relatively low. It is more common for mobile organisms to opportunistically enter estuaries when conditions are suitable and/or exploit their productivity and sheltered waters during particular stages of their life-cycle (Potter & Hyndes 1999). By accumulating sediments and nutrients from surrounding catchments, estuaries are also particularly susceptible to pollution and eutrophication, and many of WA’s estuarine systems are significantly degraded from such impacts (Brearley 2005). In particular, massive growth of algae and seagrasses has occurred in some estuaries as a consequence of eutrophication.

The Walpole and Nornalup Inlets are among the few estuaries in the south west of WA that have not been significantly modified by development and/or catchment degradation. The estuaries are a very popular recreation area for both locals and the broader WA community, and the high ecological and social conservation values of the inlet system led to it being gazetted as a marine park in 2009 (DEC 2009). The Walpole and Nornalup Inlets Marine Park comprises two discrete basin inlets and the tidal reaches of the Frankland, Deep and Walpole Rivers. The Nornalup Inlet is connected to the sea by a relatively narrow entrance channel that remains permanently open to the ocean due to the relatively high rainfall of this area, the highest in WA of ca. 1300 mm, and the protection of the channel entrance from wave action by a rocky headland (Hodgkin & Clark 1999). For this reason essentially marine conditions are maintained in most of the system throughout the drier months, and aspects of the biota are relatively diverse compared to most other estuaries in this region (Brearley 2005). In contrast to Nornalup Inlet, Walpole Inlet is much smaller and
shallower. Exchange between the two water bodies is via a narrow deep channel. During winter, the surface water of Nornalup Inlet can be quite fresh, although the bottom waters generally remain at about 30 ppt. Water in the Walpole Inlet, however, is generally of a lower salinity. The sediments of the inlets comprise fine mud in the deeper basins and clean, well-sorted sands in the entrance channel and shallows, which are particularly extensive around the Nornalup Inlet (Hodgkin & Clark 1999; DEC 2009). Notably, the inlets support little fringing marsh habitat and have relatively small areas of rocky shoreline or sub-tidal rocky substratum.

Creation of the marine park has provided impetus for updated and new scientific knowledge of the system to assist management and provide a basis for long-term monitoring of conservation values. The aim of this study was to conduct a methodical survey of marine plants in the entrance channel and Walpole and Nornalup inlet basins, with a particular emphasis on the relatively limited areas of hard substratum.

Previous studies

Prior to the current study, records of marine plants from the Walpole and Nornalup Inlets were exceedingly scant, and Brearley (2005) suggested that there are “not many types of aquatic plants” growing in the system. The only specific accounts include a short summary provided by Hodgkin & Clark (1999), wherein they described surveys of the aquatic vegetation undertaken by Marion Cambridge (October, 1976) and Jane Chambers (January, 1987); on both occasions the vegetation was found to be “sparse”. Ten species were recorded, including the seagrasses *Ruppia megacarpa* and *Heterozostera tasmanica* (probably *Zostera polychlamys*, see below), the brown alga *Cystoseira trinodis*, the red alga *Monosporus australis* (= *Mazoyerella australis*), and the green algae *Chaetomorpha linum*, *C. aerea*, *Enteromorpha intestinalis* (= *Ulva intestinalis*) and *Cladophora* *sp.*. Later, Brearley (2005) also provided an account of the marine plants, this in part derived from unpublished notes by E. Hodgkin (Brearley, pers. comm., Nov. 2010), listing *Halophila ovalis*, *Halophila decipiens*, *Polysiphonia* *sp.* and *Polysiphonia* *sp.* in addition to the species recorded by Hodgkin & Clark (1999). For the most part these earlier records cannot be verified, as only a few specimens from the surveys are lodged in the Western Australian Herbarium, and only one of those a named voucher (*Chaetomorpha linum*). These specimens include a plant of *Cystoseira trinodis* (with epiphytic *Polysiphonia intestinales*, *Ulva paradoxa*, *Cladophora sp.* and the diatom *Melosira*), and the aforementioned *Chaetomorpha linum* voucher, which has been re-examined and found to be an admixture of *Chaetomorpha indica* and *C. billardirei*. Most species previously reported from the inlets, however, were re-collected during the present survey.

Anecdotal evidence indicates that summer seagrass growth (probably *Ruppia megacarpa*) occurred to such an extent in the Walpole Inlet during the 1950s and 1960s that it clogged boat propellers (WAPC 2009). As this growth no longer occurs, it was most likely caused by nutrients entering the inlet from local agricultural sources that have since been controlled or removed (DEC 2009).

Methods

Sampling sites

Specimens were collected by JMH and MJR (assisted by Anna John and Darren Stevens) during April 2010; primarily from six shallow rocky substratum sites in the Walpole and Nornalup Inlets and by a single collection of *Halophila decipiens* (and associated epiphytes) made by benthic grab from a seventh site (Fig. 1).

Site 1 (S35.03129, E116.73309) was at Skippy Rock, a granite formation on the western shore close to where the entrance channel meets the sea (Fig. 2A). This location was visited twice (20 and 21 April), the second occasion for an incidental collection at the adjacent jetty.

Site 2 (S35.01460, E116.70937) was on rocky shoreline in Weedy Bay on the western shore of the Nornalup Inlet (Fig. 2B).

Site 3 (S34.99208, E116.74197) was on the northern side of the Nornalup Inlet; on small sub-tidal reef structures not far east of the Coalmine Beach boat ramp.

Site 4 (S34.98680, E116.72431) was in the Walpole Inlet on rocky shore on the southern side of this basin, one of the few areas of hard substratum.

Site 5 (S35.00731, E116.71220) was on the rocky shoreline of Newdegate Island, a granitic outcrop on the west side of the Nornalup Inlet, adjacent to the Deep River delta.

Site 6 (S34.99496, E116.73148) was close to Site 3, on the northern side of the Nornalup Inlet, on the rocky eastern shore of the Knoll.

Site 7 (S34.99648, E116.73780) comprised sand and was located on the north-eastern side of the Nornalup Inlet basin.

Figure 1. Map of the Walpole and Nornalup Inlets, showing the location of collection sites.
Specimen collection/preservation

Specimens were collected by snorkeling and were photographed in-situ (see Figs 2A–H, 3A–H) by JMH using a Canon G9 camera in a housing. Voucher specimens were pressed onto herbarium sheets on the laboratory, plant sections or whole-mounts were stained in a solution of aniline blue and mounted in 50% formalin/seawater for later detailed examination. Additional portions were dried in silica-gel for DNA sequence analyses, although the results of these will not be reported here. In the laboratory, plant sections or whole-mounts were stained in a solution of aniline blue and mounted in 50% formalin/seawater. Microscope preparations were examined and photographed using either a Nikon SMZ800 stereo microscope or a Nikon Eclipse 80i compound microscope, in both cases with a Nikon DS F1i digital camera. All herbarium sheets and microscopic preparations have been lodged in the Western Australian Herbarium (PERTH). The distribution of species within the inlets (Table 1) is based on presence as observed during the survey, and on subsequent laboratory examination of smaller species and epiphytes.

Environmental conditions

Environmental conditions across the Walpole and Nornalup inlets were measured at 19 sites (15 in the Nornalup and 4 in the Walpole) encompassing both the shallow peripheral sand flats and the deeper waters. At each site, a single measurement of temperature (°C), salinity (ppt), dissolved oxygen (mgL\(^{-1}\)) and pH were taken using a calibrated Hydrolab DS5 Surveyor water probe. In addition, secci depth was measured at each site. For sites >1m deep, measurements were made both at the surface and approximately 30 cm above the bottom, and the readings averaged. All measurements were made between the hours of 8am–2pm on two consecutive days at the time of the algal collection.

Arrangement of the taxonomic account

Taxonomic results are grouped into Phaeophyceae (= brown algae), Chlorophyta (= green algae), Rhodophyta (= red algae), Seagrasses, and Cyanobacteria (blue-green algae), with constituent species listed alphabetically. For each species, the name, authority, and date and page of publication are given (the place of publication listed in the references), with author names abbreviated according to Brummitt & Powell (1992). The PERTH voucher is cited, followed by a comments section.

Results

Environmental conditions

This study took place in autumn prior to the onset of significant river discharge and when environmental conditions in the inlet system were relatively stable and essentially marine. Only relatively small variations in physical parameters were apparent at the time of the survey. The mean water temperature was 20.6 °C, with the maximum (22.5 °C) and minimum (19.8 °C) occurring on the shallow peripheral sand flats and deeper waters of the Nornalup Inlet, respectively. Salinity was approximately 38 ppt throughout the inlet basins. The mean dissolved oxygen was 7.3 mgL\(^{-1}\), and this ranged from 5.9 mgL\(^{-1}\) in the Walpole Inlet to 8.4 mgL\(^{-1}\) in the Nornalup Inlet. Although water clarity was notably high during the survey, underwater visibility in the Walpole Inlet was less than at other sites due to the widespread prevalence of fine muddy sediments in this basin.

Taxonomic account

The following account details the species of seagrass, brown, green, and red macroalgae, and conspicuous cyanobacteria recorded from the Walpole and Nornalup Inlets. In addition to these taxa, numerous species of epiphytic diatoms and several microscopic cyanobacteria were present in the collections, but as these groups were not the primary focus of this study they will not be treated in detail. The former group included Grammatophora oceanica Ehrenb., Striatella unipunctata (Lyngh.) C.Agardh, Bidulphia biddulphiana (Sm.) Boyer, Melosira moniliformis (O.F.Müll.) C.Agardh, and species of Licmophora, the latter Calothrix sp. and Lyngbya sp.

Phaeophyceae

Colpomenia sinuosa (Mert. ex Roth) Derbès & Solier 1851: 95.

Specimen: Entrance channel, Nornalup Inlet (Site 1), epilithic at 1.5 m depth, 20 Apr. 2010, *J.M.Huisman* (PERTH 08227624). Only a single plant was collected and the species appears to be rare in the inlets. *Colpomenia sinuosa* is widely distributed and is found on all Australian coasts (Womersley 1987: 297).

Cystosera trinodis (Forssk.) C.Agardh 1820: 67–68.

Specimen: East Coalmine, Nornalup Inlet (Site 3), 20 Apr. 2010, *J.M.Huisman* (PERTH 08243670). This species formed dense beds near Newdegate Island (Fig. 2C) and was also common at Coalmine. *Cystosera trinodis* is widespread in tropical and subtropical regions of the Indian Ocean and extends along southern Australia to Victor Harbour, S.A. (Womersley 1987: 358). It appears to be the only large brown alga capable of surviving in the upper reaches of south-western Australian estuaries (e.g., Waychinicup Estuary, see Phillips & Lavery 1997). *Cystosera trinodis* was previously recorded for Nornalup/Walpole by Hodgkin & Clark (1999) and Brearley (2005: 366).

Dictyota fastigiata Sond. 1845: 50

Specimen: Entrance channel, Nornalup Inlet (Site 1), epilithic at 1.5 m depth, 20 Apr. 2010, *J.M.Huisman* (PERTH 08243468). *Dictyota fastigiata* was formerly included in Dilophus (see Womersley 1987), but that genus was subsumed into *Dictyota* following DNA sequence studies (see De Clerck 2003). Plants have dark brown, dichotomously branched, flattened axes that structurally have a medulla several cells thick and a cortex of a single cell layer.

Dictyota furcellata (C.Agardh) Grev. 1830: xliii.

Specimen: Entrance channel, Nornalup Inlet (Site 1), epilithic at 1.5 m depth, 20 Apr. 2010, *J.M.Huisman* (PERTH 08227616).
Table 1
Algae species collected from six rocky sites in the Walpole and Nornalup Inlets Marine Park during April 2010. Sites are arranged from the most southern (Site 1) to northern (Site 4), reflecting increasing distance from the open coast.

<table>
<thead>
<tr>
<th>Species</th>
<th>Site 1 Entrance Channel</th>
<th>Site 2 Weedy Bay</th>
<th>Site 5 Newdegate Island</th>
<th>Site 6 The Knoll</th>
<th>Site 3 N. Nornalup Inlet</th>
<th>Site 4 Walpole Inlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHLOROPHYTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetabularia caliculus</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetomorpha aerea</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetomorpha billardiirei</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetomorpha ligustica</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetomorpha indica</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladophora dalmatica</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladophora feredayi</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladophora laetevirens</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladophora lehmanniana</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Codium sp.</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizoclonium implexum</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphacelaria fusca</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulva paradoxa</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uronema marina</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHAEOPHYCEAE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colpomenia sinuosa</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystoseira trinodis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dictyota fastigiata</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dictyota furcellata</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dictyota dichotoma</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feldmannia irregularis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphacelaria biradita</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphacelaria fusca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphacelaria rigidaea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphacelaria tribuloides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHODOPHYTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrochaetium microscopicum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aglaosthannion tenuissimum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramium cliftonianum</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramium sp.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chondria angustissima</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colaconema savianum</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythrotrichia carnea</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelidium crinale</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gracilaria ramulosa</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hincksia michelii</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mazueraella australis</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ossiella pacifica</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysiphonia infestans</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysiphonia subtilissima</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polysiphonia teges</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spermothamnion cymosum</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spriridia flamentosa</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stylonema alsidii</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEAGRASS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zostera polychlamys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYANOBACTERIUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spirulina subsalsa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total # species 34 17 15 17 14 10
Figure 2. A. Reef near channel entrance, Nornalup Inlet (Site 1). The filamentous brown alga is *Hincksia mitchelliae*. B. Weedy Bay (Site 2), with higher turbidity typical of most inlet sites. C. *Cystoseira trinodis*, a large brown alga common at several sites. D. *Dictyota furcellata*, another common brown alga. E. *Dictyota dichotoma* (Site 1). F. *Hincksia mitchelliae*, epiphytic on *Cystoseira trinodis* at Newdegate I. (Site 5). G. *Sphacelaria rigidula*, forming bristly tufts at the channel entrance (Site 1). H. *Chaetomorpha aerea*, a filamentous green alga attached to rock at the Knoll (Site 6).
Dictyota furcellata was moderately common near the Nornalup entrance and also near Coalmine and Newdegate Island (Fig. 2D).

Dictyota dichotoma (Hudson) J.V. Lamour. 1809: 42.
Specimen: Entrance channel, Nornalup Inlet (Site 1), epiphytic at 1.5 m depth, 20 Apr. 2010, J.M. Huisman (PERTH 08214433).
The present specimen is not fertile but agrees with Dictyota dichotoma as described by Womersley (1987). De Clerck (2003: 166) suggests that many reports of this supposedly widespread species might be incorrect, and that D. dichotoma could be restricted to the north-east Atlantic and the Mediterranean. The identification of this and other southern Australian records of D. dichotoma are therefore tentative (Fig. 2E).

Feldmannia irregularis (Kütz.) Hamel 1939: XVII.
Specimen: Entrance channel, Nornalup Inlet (Site 1), 20 Apr. 2010, J.M. Huisman (PERTH 08243409).
This species forms light brown, filamentous tufts and is almost indistinguishable from Hincksia mitcellhiae without microscopic examination. In Feldmannia, the meristematic zones (regions of active cell division, recognisable as series of shorter cells) tend to be proximal to long, unbranched, hair-like filaments. Fertile material is readily distinguished by the plurangia distinctly tapering to a point, whereas those of Hincksia mitcellhiae are cylindrical with rounded apices (compare Figs 4A and 4B).

Specimen: Newdegate I., Nornalup Inlet (Site 5), epiphytic on Cystoseira trinodis, 21 Apr. 2010, J.M. Huisman (PERTH 08243727).
Hincksia mitcellhiae is another filamentous brown alga (Figs 2A, 2F) and was very common at most sites in Nornalup, where it was both epiphytic and epiphyte on a variety of larger algae and seagrasses. Several specimens in the collection were reproductive, with cylindrical plurangia characteristic of this species (Fig. 4B).

Sphacelaria biradiata Askenasy 1894: 15.
Specimen: Entrance channel, Nornalup Inlet (Site 1), mixed with Sphacelaria rigidula, 20 Apr. 2010, J.M. Huisman (PERTH 08243956).
Four species of Sphacelaria were collected during the survey. Each of these forms dark brown, bristly tufts and are similar in general appearance (see Fig. 2G of S. rigidula). They can be distinguished by their microscopic structure and the form of their propagules (vegetative reproductive structures); those of S. biradiata have two basally constricted, elongate arms, plus an apical elongate hair, those of S. fusca generally have three elongate arms, whereas propagules in S. rigidula have two arms and in S. tribuloides they are triangular without elongate arms (Womersley 1987: 168).

Sphacelaria fusca (Huds.) Gray 1821: 333.
Specimen: Newdegate I., Nornalup Inlet (Site 5), on old oyster shells, 21 Apr. 2010, J.M. Huisman (PERTH 08243611).
Sphacelaria fusca was found only on old oyster shells near Newdegate Island and was the least common of the four species of Sphacelaria recorded.

Sphacelaria rigidula Kütz. 1843: 292.
Specimen: Newdegate I., Nornalup Inlet (Site 5), on old oyster shells, 21 Apr. 2010, J.M. Huisman (PERTH 08214441).
This species (Fig. 2C) was more widespread but was also found on oyster shells near Newdegate Island, the same habitat as S. fusca. Sphacelaria rigidula has narrower branches and propagules typically with 2 arms (Fig. 4C).

Sphacelaria tribuloides Menegh. 1840: [2]
Specimen: Entrance channel, Nornalup Inlet (Site 1), on rock, 20 Apr. 2010, J.M. Huisman (PERTH 08227594).
Sphacelaria tribuloides was only found at the Entrance channel site (Site 1), where it formed epiphytic tufts. The specimens bore the triangular propagules (Fig. 4D) characteristic of this species.

Chlorophyta

Acetabularia caliculus J.V. Lamour. in Quoy & Gaimard 1824: 621.
Specimen: East Coalmine, Nornalup Inlet (Site 3), on old bivalve shells, 20 Apr. 2010, J.M. Huisman (PERTH 08243699).
Acetabularia caliculus is a common species that is often found growing in clusters on old bivalve shells on sandy substrata, which was also the habitat of the present specimens.

Chaetomorpha aerea (Dillwyn) Kütz. 1849: 379.
Specimens: The Knoll, Nornalup Inlet (Site 6), epiphytic at 1 m depth, 21 Apr. 2010, J.M. Huisman (PERTH 08243579).
Chaetomorpha is a simply constructed genus that forms unbranched filaments composed of cylindrical cells. Species distinctions are based on habit (whether attached or free-floating) and differences in cells diameter and proportions (length/breadth ratio = L/B) (Womersley, 1984), although often published accounts vary in the size ranges included in single species. These morphological features, especially cell dimensions, are now regarded as poor indicators of phylogenetic relationships in the green algae (Leliaert et al. 2007) and it is clear that Chaetomorpha is in need of revision (Leliaert & Boedeker 2007). For the interim, however, it is prudent to at least recognise the different morphologies. Chaetomorpha aerea was one of four species of the genus recorded and was the only one found attached. Plants grow on rock in the shallow subtidal (Fig. 2H) and were mostly inundated with silt, such that they were only visible after cleaning. Cell diameters were 250–300 μm, with an L/B of 1–2 (–3). Their basal cells, at 600–1200 μm in length, can be slightly longer than those reported by Womersley (1984: 172), but were comparable to dimensions recorded for this species from elsewhere (e.g., Alves et al. 2009), and otherwise the specimens are comparable. The lowermost cells also had thicker walls than reported by Womersley (1984; to 30 μm as opposed to 2–4 μm), which relates these specimens to the unattached C. valida. Chaetomorpha aerea was also recorded by Brearley (2005: 366).

Chaetomorpha billardierei Kütz., 1847: 166.
Specimen: East Coalmine, Nornalup Inlet (Site 3), entangled on Cystoseira trinodis, 20 Apr. 2010, J.M. Huisman (PERTH 08243366).
Plants of this species were unattached, with cells 290–400
μm in diameter and L/B ≈ 1–2, the largest of the four Chaetomorpha species recorded here. The cells are of a similar diameter to those reported for C. linum (Womersley 1984), but are generally longer than broad (L/B ≈ 1–2). Chaetomorpha billardieri was also recorded by Hodgkin & Clark (1999), epiphytic on Ruppia and Zostera (as Heterozostera), and Brearley (2005: 366). The spelling of the species epithet is variously given as “billardierii” (Womersley 1984: 176; Guiry & Guiry 2010) or “billardieri” (Index Nominum Algarum 2010) but as the name commemorates French botanist J.J. de Labillardière it should be corrected to “billardieri” (International Code of Botanical Nomenclature 2006: Art. 67, Ex. 15).

Chaetomorpha indica (Kütz.) Kütz. 1849: 376. Specimen: Entrance channel, Nornalup Inlet (Site 1), unattached, 20 Apr. 2010, J.M.Huisman (PERTH 08243964).

This species formed entangled skeins and was common near the Nornalup entrance (Fig. 3A). The filaments were 70–100 μm in diameter, which is at the lower end of the range reported by Womersley (1984), but the L/B ratios are comparable. Also recorded for Walpole Inlet by Womersley (1984: 180).

Chaetomorpha ligustica (Kütz.) Kütz. 1849: 376. Specimen: Entrance channel, Nornalup Inlet (Site 1), unattached, 20 Apr. 2010, J.M.Huisman (PERTH 08243972).

Plants of C. ligustica were mixed with C. indica and have a similar appearance, but with slightly smaller filament diameters and cells that are proportionally shorter (L/B ≈ 1–2). Womersley’s (1984) treatment would place these specimens in Chaetomorpha capillaris, a species now regarded as a taxonomic synonym of Chaetomorpha ligustica (see Guiry & Guiry 2010).

This is one of four species of Cladophora collected. The specimens agree with the description provided by Hoek & Womersley (1984: 202). Cladophora dalmatica is sometimes treated as a taxonomic synonym of C. vagabunda (L.) C.Hoek, but is retained here due to its distinctly narrower apical cells (15–20 μm, versus 25–70 μm reported for C. vagabunda by Hoek & Womersley 1984: 203). Cladophora dalmatica, C. laetevirens, and C. lehmanniana are included in Section Glomeratae, differing primarily in their cell diameters.

Cladophora feredayi Harv. 1858: pl. 47. Specimen: Newdegate I., Nornalup Inlet (Site 5), epiphytic, 21 Apr. 2010, J.M.Huisman (PERTH 08243476).

Cladophora laetevirens (Dillwyn) Kütz. 1843: 267. Specimen: Entrance channel, Nornalup Inlet (Site 1), 21 Apr. 2010, J.M.Huisman (PERTH 08243557).

The branching pattern of Cladophora lehmanniana is similar to that of C. dalmatica, but plants are considerably larger, with apical cells ca 100 μm in diameter.

Codium sp. Specimens: Walpole Inlet (Site 4), 21 April 2010, J.M.Huisman (PERTH 08243492).

This species was common at Coalmine and Newdegate Island, and was the only large alga present in the Walpole Inlet (Fig. 3B), where it was attached to rock and typically covered in silt, such that it was visible only after cleaning. Plants are structurally similar to Codium harveyi P.C.Silva (see Womersley 1984: 236) but have flattened lower branches, some subtle differences in utricle morphology, and unique DNA sequences, suggesting they represent an undescribed species (Hart & Huisman 2010). A formal description will be published elsewhere.

Struvea plumosa Sond. 1845: 50. Specimen: The Knoll, Nornalup Inlet (Site 6), epiphytic, 21 Apr. 2010, J.M.Huisman (PERTH 08227640).

When fully developed, Struvea plumosa is one of the most distinctive and attractive of Western Australia’s marine algae, as it forms a paddle-shaped frond composed of anastomosing filaments forming a coarse net (see Huisman 2000). The present record, however, is based on less developed plants that are present as dense clusters of unbranched stipes (Fig. 3C). These are often indistinguishable from stipes of Apollonia laetevirens Harv. (Womersley 1984: 182). Fortunately, one stipe in the collection showed some distal branching similar to that of fully developed Struvea plumosa, allowing a positive identification.

This species occurs as unattached, unbranched filaments, similar in appearance to species of Chaetomorpha but with considerably narrower cells that are only 20–22 μm in diameter.

Ulva paradoxa C.Agardh 1817: xxii. Specimen: Entrance channel, Nornalup Inlet (Site 1), 20 Apr. 2010, J.M.Huisman (PERTH 08243646) (Fig. 3A).

This species was common at most locations. Ulva paradoxa was previously included in the genus Enteromorpha, but that genus has been subsumed into Ulva (see Hayden et al. 2003). Ulva paradoxa is not typical of the ‘sea lettuce’ form of Ulva, with flat green sheets, or, superficially, the tubular form of the species previously included in Enteromorpha. Plants are very narrowly tubular, linear, with common uniseriate lateral branches (Fig. 4E). As is distinctive of this species, the cells are arranged in longitudinal and often transverse rows, with chloroplasts mostly with 3–4 pyrenoids.

This is a small, unbranched filamentous epiphyte, typically less than 250 μm tall, which is generally only recorded during microscopic examination. It was very common in the inlets and was observed on larger algae collected from most sites. Leliärt et al. (2009: 493) queried the placement of this species in Uronema, but retained the name pending molecular investigation.
Figure 3. A. *Ulva paradoxa* and *Chaetomorpha* spp. at the channel entrance (Site 1). B. *Codium* sp., a likely new species and the only conspicuous alga in Walpole Inlet (Site 4). C. Massed stipes of *Struvea plumosa* at Newdegate I. (Site 5). D. *Centroceras clavulatum*, a filamentous red alga at the channel entrance (Site 1). E. *Gracilaria ramulosa* at Newdegate I. (Site 5). F. *Mazoyerella australis*, one of the most common red algae at inlet sites (Site 5). G. The seagrass *Zostera polychlamys* on sand at the channel entrance (Site 1). H. The cyanobacterium *Spirulina subsalsa* formed colonies on the sand surface at Newdegate I. (Site 5)
Rhodophyta

Acrochaetium microscopicum (Nägeli ex Kütz.) Nägeli in Nägeli & Cramer 1858: 532, footnote.

Specimens: Entrance channel, Normalup Inlet (Site 1), epiphytic on *Spermothamnion cymosum*, 20 Apr. 2010, *J.M.Huisman* (PERTH 08244014).

This species is a diminutive epiphyte on larger algae, only recorded during microscopical examination.

Aglaothamnion tenuissimum* (Bonnem.) Feldm.-Maz. 1941: 3.

Specimen: Walpole Inlet (Site 4), epiphytic on *Cystoseira trinodis* 21 Apr. 2010, *J.M.Huisman* (PERTH 08243603).

Several plants were collected from the Walpole Inlet, representing all stages of the life history. This species was treated in Womersley & Wollaston (1998) as *Callithamnion hyssoides* Harv. (1833: 342), but that species is regarded as a synonym of *A. tenuissimum* by Furnari *et al.* (1998). The specimens differ slightly from those described by Womersley & Wollaston (1998: 248) in having obvoid to ellipsoidal tetrasporangia, whereas those described in Womersley & Wollaston are sub-spherical. Maggs & Hommersand (1993), however, described ellipsoidal tetrasporangia similar to those of the Walpole specimens.

Centroceras clavulatum (C.Agardh) Mont. 1846: 140.

Specimen: Entrance channel, Normalup Inlet (Site 1), on sand, 20 Apr. 2010, *J.M.Huisman* (PERTH 08244006) (Fig. 3D).

Centroceras clavulatum is a widespread species found on most Australian coasts. Plants are filamentous and dichotomously branched, somewhat similar to species of _Ceramium_ but recognisable due to their complete cortication and the presence of whorls of spines at nodes.

Ceramium cliftonianum J.Agardh 1876: 93.

Specimen: Entrance channel, Normalup Inlet (Site 1), on jetty pilings, 21 Apr. 2010, *J.M.Huisman* (PERTH 08243837).

Plants essentially agree with the description given by Womersley (1998: 415), although the frequency of branching is less than that of specimens depicted therein (Womersley 1998: figs 189H, I).

Ceramium sp.

Specimen: Entrance channel, Normalup Inlet (Site 1), 21 Apr. 2010, *J.M.Huisman* (PERTH 08243417).

This species has prostrate axes and slender, sparsely branched upright axes with straight apices, 4 periaxial cells per node and only acropetal development of cortical cells. This morphology relates it to species such as _Ceramium affine_ Setch. & N.L.Gardner, but accurate identification requires reproductive specimens, which were unfortunately not collected during the present survey. Whatever the eventual determination, this species will represent a new record for southern Australia, as the vegetative structure differs from all species recorded for the region by Womersley (1978; 1998).

Specimen: Entrance channel, Normalup Inlet (Site 1), on jetty pilings mixed with _Ceramium cliftonianum_, 21 Apr. 2010, *J.M.Huisman* (PERTH 08243913).

Both cystocarpic and male specimens were present in the collection, both agreeing with descriptions of this species by Gordon-Mills & Womersley (1987: 531) and Womersley (2003: 426). This species is confined to sheltered estuarine conditions (Womersley 2003: 427) and was previously recorded from the Leschenault Inlet in south-west Western Australia (Womersley 2003: 427; AD A56618).

Specimen: Entrance channel, Normalup Inlet (Site 1), epiphytic on leaves of _Zostera polychlamys_, 1 m depth, 20 Apr. 2010, *J.M.Huisman* (PERTH 08243506).

Colaconema savianum is a small (less than 2 mm tall), branched, filamentous epiphyte, distinguished by its straight filaments bearing monosporangia (single-celled vegetative reproductive structures).

Erythrotrichia carnea (Dillwyn) J.Agardh 1883: 15.

Specimen: Entrance channel, Normalup Inlet (Site 1), epiphytic on _Chondria angustissima_, 21 Apr. 2010, *J.M.Huisman* (PERTH 08243921).

Erythrotrichia carnea is another small, filamentous epiphyte, distinguishable from other taxa sharing this habitat in being unbranched (_Acrochaetium, Colaconema_ and _Stylonema_ are branched).

Plants of _G. crinale_ are turf-like and wiry, with prostrate and sparsely branched erect axes that are terete or flattened. It is a common species in south-western Australia and elsewhere.

Specimen: Entrance channel, Normalup Inlet (Site 1), 20 Apr. 2010, *J.M.Huisman* (PERTH 08243360).

This species and _Gelidium crinale_ were the only cartilaginous red algae encountered during the survey. Plants (Fig. 3E) grew to a height of approximately 12 cm and can be recognised by their terete branches and multiaxial construction (see Womersley 1996: 18). _Gelidium crinale_ is a much smaller species and is structurally uniaxial.

Mazoyerella australis is a filamentous red alga (Fig. 3F) that was one of the more common species in the inlets, being recorded at most sites (see Table 1). Collections from The Knoll also provided the first known record of field-collected reproductive specimens. Until recently, this species was included in _Monosporus_, a genus in which the only known reproductive structures are single-celled propagules (the genus name is based on the incorrect interpretation of these structures as monosporangia, see Huisman & Kraft 1982).

Subsequently, Huisman & Gordon-Mills (1994) described the presence of sexual reproductive structures in material...
grown in culture, demonstrating (at least) the potential for a sexual life history in addition to vegetative propagation by propagules. The structure of these reproductive organs then provided the basis for Huisman & Womersley’s (1998: 302) transfer of the species to Mazayerella, although this was somewhat tentative as fertilization, and subsequent post-fertilization events, were not observed in Huisman & Gordon-Mills’ (1994) culture studies. As post-fertilization and the development of the carposporophyte generation are important in generic delineation, the discovery of these stages in the Nornalup collections (Fig. 4F) will allow confirmation (or not) of the taxonomic placement of *M. australis*. These results will be incorporated into a DNA sequence study and will be reported elsewhere.

Ossiella pacifica A.Millar & I.A.Abbott 1997: 89.
Specimen: Entrance channel, Nornalup Inlet (Site 1), mixed with *Polysiphonia infestans*, 20 Apr. 2010, J.M.Huisman (PERTH 08243514) (Fig. 4G).

This species was originally described in 1997 for specimens from Norfolk Island and the Hawaiian Islands (Millar & Abbott 1997), and was subsequently recorded from Micronesia (McDermid et al. 2002; Lobban & Tsuda 2003; Guiry & Guiry 2010). Given this known distribution in warmer waters of the Pacific Ocean, the occurrence of *O. pacifica* in Nornalup Inlet was certainly surprising. The specimen is not reproductive, but displays several distinctive vegetative features unique to this genus, including the simultaneous production of determinate whorl branches from the distal ends of axial cells (Millar & Abbott 1997: 94). Millar (pers. comm. July, 2010) examined images of this specimen and confirmed its identity. As this represents a new record for Western Australia (and mainland Australia), a full description of the specimen is given below.

Thallus filamentous, primarily upright, 8 mm tall, attached to the substratum by unicellular rhizoids arising from lower cells, uncoricated, dichotomously branched near apices, but unbranched for most of its length. Cells elongate, near base cylindrical, 120–145 μm diam., 680–1070 μm long, towards apices becoming shorter and clavate, 60–80 μm diam., 300–350 μm long, at apices obvoid to ellipsoid, 35–40 μm diam., only slightly longer than broad. Apical cells simultaneously cutting off distally a whorl of 4 villous pigmented caducous determinate whorl branches, these dichotomously branched, markedly thinner than the axial filament, basal cells 7–10 μm diam., 120–170 μm long, distal cells more slender and hair-like. Reproductive structures not observed.

Polysiphonia infestans Harv. 1855: 539.
Specimens: *W* of boat shed, Nornalup Inlet, epiphytic on *Cystoseira trinodis* on rocks on sand flat, 30–50 cm depth, 23 Oct. 1976, M.L.Cambridge (PERTH 07023146); Entrance channel, Nornalup Inlet (Site 1), epiphytic on *Dictyota furcellata*, 20 Apr. 2010, J.M.Huisman (PERTH 08227608). PERTH 07023146 is a dried specimen that did not rehydrate well, and the determination is therefore tentative. The specimen has 4 pericentral cells, tetrasporangia in gently spiral series, and the dimensions of *P. infestans*, but the origin of the lateral branches (important for species identification) could not be ascertained. Specimens from the present survey were male and essentially agree with Womersley’s description (2003: 188–189), including the lateral branches replacing trichoblasts. However, the segments were often proportionally longer and the spermatangial branches did not have a prominent sterile apical cell, which are usually present according to Womersley (2003: 189). *Polysiphonia infestans* is a common species in the region and was originally described from material from Princess Royal Harbour, Albany (Womersley 2003: 184).

Polysiphonia subtillissima Mont. 1840: 199.

This species typically occurs in sheltered locations (Womersley 2003: 180). The specimens have a limited prostrate system attached by rhizoids in open connection to the bearing cell, upright axes with 4 pericentral cells, and no trichoblasts or scar cells. One specimen bore immature tetrasporangia in a straight series. All of these features agree with this species as described by Womersley (1979: 470–472; 2003: 178–180).

Polysiphonia teges Womersley 1979: 494
Specimen: Newdegate I., Nornalup Inlet (Site 5), epilithic on rubble, 21 Apr. 2010, J.M.Huisman (PERTH 08243565).

Prior to the present collection, this species was known only from the type locality at Frenchmans Bay, Albany, and Spencer Gulf in South Australia (Womersley 2003: 202). It is a distinctive species characterized by prostrate axes with rhizoids in open connection with the bearing pericentral cell, and axial cells each with 6 pericentral cells. Trichoblasts were absent or rudimentary in the present collection, but many apices were denuded.

Spermothamnion cymosum (Harv.) De Toni 1903: 1226.

Spermothamnion cymosum is represented in the collections by several specimens comprising uncoricated prostrate filaments (cells 70–90 μm in diameter), bearing simple or sparsely dichotomously branched upright axes. Some plants bore tetrahedral tetrasporangia and polysporangia, these 55–80 μm in diameter and arising terminally on lateral branches. Both the habit and tetrasporangia agree with the description and figures given by Gordon (1972: 117–119, fig. 38E) and Womersley (1998: 225). The species is rarely collected and the only reproductive structures previously known are the aforementioned tetrasporangia. Consequently, its generic assignment has been regarded as tentative, as details of female reproductive structures and carposporophyte architecture are necessary for definite placement. The present collections include the first recorded male specimens. The arrangement of spermatangia (described in full below) in distinct heads (Fig. 4H) supports the inclusion of *S. cymosus in Spermothamnion*, but this placement must remain unconfirmed until female gametophytes and carposporophytes are collected.

Spermatangia in heads arising in unilateral series on upright axes, sessile or with single-celled stalks (Fig. 4F), if the latter then often in pairs. Spermatangial heads 75–120 μm long, 30–50 μm broad, with 4–6 axial cells bearing radial (often obliquely cut off) spermatangial...
mother cells and spermatangia, the basal cell generally proximally naked.

Spyridia filamentosa (Wulfen) Harv. 1833: 337.
Specimen: Entrance channel, Nornalup Inlet (Site 1), 20 Apr. 2010, J.M.Huisman (PERTH 08243581).
Spyridia filamentosa is a widespread species found on most Australian coasts and temperate and tropical seas worldwide. The present specimens agree with the descriptions given by Womersley & Cartledge (1975: 222), Huisman (2000) and Womersley (1998: 372).

This species is a diminutive epiphyte that is common in most seas. Zuccarello et al. (2008) analyzed DNA sequences generated from geographically widespread specimens and concluded that this was a truly ubiquitous species.

Seagrasses

Halophila decipiens Ostenf. 1902: 260.
Specimen: Nornalup Inlet (Site 7), 21 Apr. 2010, M.Rule & A.John (PERTH 08243654).
Fruiting plants of _H. decipiens_ were collected by benthic grab from a relatively deeper site in the middle of Nornalup Inlet. Leaves of these plants displayed the spiny margins and surface typical of this species, features that distinguish it from the somewhat similar looking _Halophila ovalis_. Kuo & Kirkman (1995: 336) recorded this species from several inlets along the south coast of Western Australia, including Nornalup Inlet. Their record, however, was based on a ‘drift leaf’ and not an _in situ_ collection. This species was also recorded by Brearley (2005: 366).

Zostera polychlamys (J.Kuo) S.W.L.,Jacobs & Les 2009: 423.
Specimen: Entrance channel, Nornalup Inlet (Site 1), on sand at 1.5 m depth, 20 Apr. 2010, J.M.Huisman (PERTH 08227632) (Fig. 3G).
The present specimens matched the description of this species (as _Heterozostera_ by Kuo (2005: 124–126), including the smooth epidermis and lack of upright stems. The inclusion of _Heterozostera_ species in _Zostera_ is based on the phylogenetic scheme proposed by Les et al. (2002) and Jacobs & Les (2009), a scheme that has not been universally accepted (see Kuo 2005) but one that appears to be the most reasonable interpretation of the available data. This species was recorded by Hodgkin & Clark (1999) as _Heterozostera tasmanica_, at which that time was more broadly conceived. _Zostera_ sp. (presumably this species) was also recorded by Brearley (2005: 366).

Cyanobacteria

Spirulina subsalsa Oerst. ex Gomont 1892: 353.
Specimen: Newdegate I., Nornalup Inlet, forming mats on sand at 1.5 m depth, 21 Apr. 2010, J.M.Huisman (PERTH 08243638).
This species forms mats of fine green filaments on the sandy bottom (Fig. 3H). The individual trichomes are very narrow (1–2 μm diam.) and are regularly and tightly spirally coiled. According to McGregor (2007: 43), this species is cosmopolitan and is considered to be euryhaline.

Other Records

Ruppia megacarpa R.Mason 1967: 525, “swan grass”
This seagrass species was recorded by Hodgkin & Clark (1999) and Brearley (2005) as growing in shallow water on sand flats near the Deep River delta and stunted plants in south eastern shore, and was also recorded from Nornalup Inlet by Boyce et al. (2001) and Svensson et al. (2007). Brearley (2005: 366) suggested that it was not prolific and was often covered with epiphytes such as the red alga _Polysiphonia_. Although this species was not collected during the 2010 survey, it is well known and unlikely to be misidentified, and we therefore have no reason to question its occurrence in the Walpole and Nornalup Inlets.

Halophila ovalis (R.Br.) Hook.f. 1858: 45, “paddle weed”
This species was recorded by Brearley (2005: 366), along with the congeneric _H. decipiens_, but was not collected during the 2010 survey and no vouchers are present in PERTH. It is a distinctive species, however, and we therefore have no reason to doubt the record.

Chaetomorpha linum (O.F.Müll.) Kütz. 1845: 204.
This species is the only one of the older records represented in PERTH by a named voucher [Walpole Inlet, 9 July 1971, R.Lenanton (PERTH 07067011)]. As described by Womersley (1984: 176), _C. linum_ has filaments 200–400 μm in diameter with a length/breadth ratio (L/B) of cells 0.5–1.5. PERTH 07067011 is a mixture of 2 species of _Chaetomorpha_, neither of which appears to be _C. linum_. One, with broad cells 190–260 μm diam, L/B 1–2, agrees with _C. biliaridieri_ Kütz. The second, with cells 75–100 μm in diameter and L/B 2.5–5, has the size of _C. capitaris_ but the cell proportions of _C. indica_. This latter specimen is identical to the recent collections referred to _C. indica_ based on cell proportions. Both species on sheet 07067011 were therefore also collected in the 2010 survey, but not _Chaetomorpha linum_, the presence of which is regarded as uncertain. _Chaetomorpha linum_ was also recorded by Brearley (2005: 366), along with _C. aerea_ (Dillwyn) Kütz., as abundant in 1973–74.

Ulva intestinalis L. 1753: 1163.
This species was previously recorded as _Enteromorpha_, but all species of that genus are now included in a more broadly conceived _Ulva_, following the studies of Hayden et al. (2003). _Ulva intestinalis_ was recorded for the inlets by Hodgkin & Clark (1999), and Brearley (2005: 367) noted that floating mats of _U. intestinalis_ and _Chaetomorpha biliaridieri_ were present in shallow water on the east side of the inlet in 1987. This species was not collected in the present survey and no vouchers are lodged in PERTH. Of congeneric species, only _Ulva paradoxa_ was recorded in the 2010 survey. Recognition of species within _Ulva_ can be difficult, but _U. intestinalis_ and _U. paradoxa_ are both distinctive and unlikely to be confused. Thus, while we are unable to confirm the record of _U. intestinalis_, we can equally not refute it.
Discussion

Taxonomy

Forty-nine species of marine algae and seagrasses are recorded for the Walpole and Nornalup Inlets, including 15 green algae, 11 brown algae, 18 red algae, 4 seagrasses, and one cyanobacterium. In addition, several epiphytic diatoms and inconspicuous cyanobacteria are noted. This represents a substantial increase on the 14 species previously known from the inlets and is a more realistic appraisal of the diversity. Unfortunately similar studies of south-western estuaries are mostly lacking, with only Waychinicup Estuary receiving comparable detailed attention (Phillips & Lavery 1997). That study recorded 40 species of macroalgae and 5 seagrasses, a diversity seemingly comparable to that recorded herein, but significantly only 5 species were common to the two estuaries (Chaetomorpha aerea, Cystoseira trinodis, Colpomenia sinuosa, Dictyota dichotoma, and Heterozostera tasmanica; the latter probably = Zostera polycharsmy). Other studies have focussed primarily on macrophyte populations in respect to nutrient loading (e.g. Lukatelich et al. 1987), with floristic surveys of secondary importance. Hillman et al. (2000) recorded 4 seagrasses and 13 macroalgae for the Leschenault Inlet, but several of these were identified only to genus, making direct comparisons difficult. Nevertheless, they recorded the dominant species as the seagrass Halophila ovalis, the green alga Chaetomorpha linum, and the brown alga Hormophyta cuneiformis (as H. triqueta), of which only H. ovalis is reliably recorded for the Walpole and Nornalup Inlets. Lukatelich et al. (1987) reported that the seagrass Ruppia megacarpa, a species that is relatively rare in the Walpole and Nornalup Inlets, comprised over 90% of the marine plant biomass in the Wilson Inlet. These disparities suggest that the marine flora of each estuarine system is likely to be unique, and each will require dedicated floristic surveys.

Of the 49 species recorded for the Walpole and Nornalup Inlets, most are relatively common elements of the south-western Australian marine flora, but a few warrant particular mention. One of the more common species in the inlets proper is a species of Codium, a genus of green algae with an essentially worldwide distribution and represented on the southern Australian coast by 16 species (Womersley 1984). The present collection does not, however, agree with any previously described species and appears to be new to science. It will be described formally elsewhere, as part of a monograph of Western Australian Codium currently in preparation (see Hart & Huisman 2010). Codium includes the invasive pest C. fragile subsp. fragile, which has been introduced to eastern and southern Australia and was recently discovered in Albany harbour (Hart & Huisman 2010). The new species, however, is clearly distinct from C. fragile, both morphologically and molecularly, and does not appear to pose a threat to the Walpole and Nornalup Inlets Marine Park. Collections of two species, Mazayerella australis and Spermothamnion cymosum, included specimens bearing reproductive structures that were hitherto unrecorded. In the case of Mazayerella australis, these structures will be described in detail elsewhere, as part of a DNA sequence study assessing the generic affinities of this species. Preliminary results indicate that it is incorrectly placed in Mazayerella. The collection of Spermothamnion cymosum included male specimens and the structure of the spermatangial heads supports the inclusion of this species in Spermothamnion, although the still unknown female and carposporophytic specimens are required for confirmation. Lastly, Ossiella pacifica, a species hitherto known from warmer waters of the Pacific Ocean, is newly recorded for mainland Australia. The reasons for this unusually disjunct distribution are unclear and will require further study.

Ecology

The marked disparity in the number of algae and seagrass species collected at sites in the entrance channel (34 taxa), Normalup Inlet (14–17 taxa) and Walpole Inlet (10 taxa) indicates that the diversity of marine plants diminishes with increasing distance from the sea. Although it is beyond the scope of this study to clearly identify the cause of this distribution, some points relating to the hydrology of the inlet system are likely to be relevant. This survey was conducted in autumn (April) when water clarity is highest and environmental conditions were relatively stable throughout the system, but the inlet waters can change markedly with the onset of freshwater river flows during the winter (Hodgkin & Clark 1999). Winter water temperatures may drop from summer highs of >20 °C to ca. 12 °C and a pronounced halocline may form with water of <10 ppt salinity flowing above relatively saline deeper waters. Notably also, the typically tannin-stained river water can markedly lower water clarity in the inlets. Although the extent of these seasonal changes varies annually with the amount of rain received by the surrounding catchments, and the subsequent volume of riverine discharge, the change in water quality could reasonably be expected to be highest in the upper reaches, with the impact lessening further seaward where there is greater tidal exchange. These seasonally variable environmental conditions strongly influence the use of estuarine habitats by mobile organisms such as fish, which may leave the system for periods or move within it to avoid brackish water (Potter & Hyndes 1999). Such variable conditions are also most likely to limit the capacity of some marine algae and seagrasses to successfully establish within the Walpole and Nornalup inlets.

While twelve species that occurred at the entrance channel site were not recorded further inside the inlets, other species were present only within the inlet basins, including two algae species that occurred only in the Walpole Inlet (Table 1). Moreover, most of the species found in the inlet basins were reproductive, suggesting that these populations may be self-propagating and not dependent on oceanic recruitment. These findings suggest that the distributional patterns observed in this study are not simply a reflection of marine species entering the system and diminishing in diversity due to an increasing estuarine influence. It is likely that a number of the species collected during this survey are particularly tolerant of estuarine conditions, such as diminished temperature, salinity and water clarity. This may be especially so in the Walpole Inlet, which is relatively distant from the ocean and where fine silt is prevalent. In fact, some of the specimens recorded during this study were actually found to be covered by silt at the
time of collection. The particularly high tolerance to large ranges in water temperature and salinity of Polysiphonia subtilissima, which was found exclusively in the Walpole Inlet during this study, has been previously described in the muddy upper reaches of a North American estuary (Fralick & Mathieson 1975).

Further study

While this survey significantly builds on the existing knowledge of marine plants in the Walpole and Nornalup Inlets, it does represent a single sampling event. More detailed taxonomic and ecological studies of these species in the inlet system are required, especially with regard to their response to environmental conditions associated with the hydrological cycle. Documentation of the marine flora (and fauna) provides a baseline for comparison with future surveys. The establishment of the Marine Park provides a degree of protection, but there will undoubtedly be increasing establishment of the Marine Park provides a degree of protection, but there will undoubtedly be increasing pressures with additional development and the potential for nutrient enrichment, plus the impact of global climatic change cannot be ignored. Studies such as this, with all records backed by voucher collections and therefore able to be re-examined, are vital if the values that led to the Park’s declaration are to be monitored and maintained.

Note added in proof: Following the taxonomic revision of Draisma et al. (2010), Cystoseira triodis (Forsk.) C.Agardh is now known as Siphysalis triodis (Forskal) Kütz.

Acknowledgements: The authors thank Darren Stevens and Anna John from DEC for field and laboratory assistance. JMH thanks the Australian Biological Resources Study for funding.

References

Agardh C A 1817 Synopsis algarum Scandinaviae, adjecta dispositione universali algarum. Berlingiana, Lund.

Agardh J G 1876 Species genera et ordines algarum, seu descriptiones succinctae specierum, generum et ordinum, quibus algarum regnum constituitur. Volumen tertium: de Florideis curae posteriores. Part I. CWK Gleerup, Leipzig

Gray S F 1921 A natural arrangement of British plants, according to their relations to each other, as pointed out by Jussieu, De Candolle, Brown, &c. including those cultivated for use; with an introduction to botany, in which the terms newly introduced are explained. Baldwin, Cradock & Joy, London.

Greville R K 1830 Algae britannicae, or descriptions of the marine and other inarticulated plants of the British islands, belonging to the order Algae: with plates illustrative of the genera. McLachlan & Stewart; Baldwin & Cradock, Edinburgh & London.

Harvey W H 1855 Some account of the marine botany of the colony of western Australia. Transactions of the Royal Irish Academy 22: 525–566.

Harvey W H 1858 Phycologia Australica: or, a history of Australian seaweeds; comprising coloured figures and descriptions of the more characteristic marine algae of New South Wales, Victoria, Tasmania, South Australia, and Western Australia, and a synopsis of all known Australian algae. Vol. 1. Lovell Reeve & Co., London.

Huisman J M & Gordon-Mills E M 1994 A proposal to resurrect the tribe Monosporaeae Schmitz et Hauptfleisch, with a description of Tanakaela Itono sp. nov. (Ceramiaceae, Rhodophyta) from southern and western Australia. Phycologia 33: 81–90.

Index Nominum Algarum, University Herbarium, University of California, Berkeley. Compiled by PI Silva. Available online at http://ucjeps.berkeley.edu/INA.html

Kützing F T 1845 Phycologia germanica. W Köhne, Nordhausen.

Linnaeus C 1753 Species plantarum. Impensis Laurentii Salvii, Stockholm.

Ostenfeld C H 1902 Hydrocharitaceae, Lemnaceae, Pontederiaceae, Potamogetonaceae, Gentianaceae (Limnanthemum), Nymphaeaceae. Botanisk Tidsskrift 24: 260–263.

WAPC 2009 Augusta-Walpole coastal strategy. Western Australian Planning Commission, Perth, Western Australia.

Womersley H B S 1996 The marine benthic flora of southern Australia – Part IIIB. Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales. Australian Biological Resources Study & State Herbarium of South Australia, Canberra & Adelaide.

A new species of *Mictyris* (Crustacea: Decapoda: Brachyura: Mictyridae) recorded from northern Australia-Kimberley region to Cape York

J Unno\(^1\,^2\) & V Semeniuk\(^2\)

\(^1\) Edith Cowan University, Joondalup, WA
\(^2\) V & C Semeniuk Research Group
21 Glenmere Road, Warwick, WA 6024

Manuscript received November 2010; accepted February 2011

Abstract

Mictyris darwinensis is a new species of soldier crab recorded from the Kimberley region of Western Australia to Albany Passage, Cape York in Queensland. Diagnostic features include: its relatively small eyes; smooth carapace; prominent non-recurving antero-lateral spines with microscopically granular ridges to branchial and sub-hepatic regions; chelipeds with long carpus and slender palm; two parallel spines on the ventro-distal marigins of the cheliped merus; narrow front; rectangular and downward-projecting shape of the carapace posterior border; short pointed spine at distal end of dorsal ridge on carpus of walking leg; and long straight dactyl on the 4th walking leg. The new species has morphological affinities with *M. longicarpus* Latreille 1806, and to a lesser extent with *M. occidentalis* Unno 2008. *M. darwinensis* is endemic to the northern Australian coastal sector from Western Australia to Queensland. A key to the described species of *Mictyris* is provided.

Keywords: Mictyridae, *Mictyris darwinensis*, soldier crab, taxonomy, endemic, Western Australia.

Introduction

Mictyris darwinensis, a new species from the monotypic Family Mictyridae Dana 1851, is described from the northern Australian coastal region, recorded from Shirley Island in the Kimberley region of Western Australia to Cape York in Queensland (Fig. 1).

The taxonomic history of *Mictyris* in regard to the description of its various species, the misapplication and misspelling of names, and the problems of holotypes was discussed by Unno (2008). McNeill (1926) identified the Western Australian and Northern Territory species of *Mictyris* as morphologically distinct variants of *M. longicarpus*. Davie (1982, 1985, 2002) suggested that *Mictyris* in Australia is a “complex” of species. This complex includes: three species described from eastern Australia (*M. longicarpus* Latreille 1806, *M. platyeheles* H Milne Edwards 1852, and *M. livingstonei* McNeil 1926), one from Western Australia described as *M. occidentalis* Unno 2008, and a fifth from the Northern Australian region, which is the subject of this paper.

This present study supports full species status for the *Mictyris* that is endemic to coastal areas of the Kimberley region in Western Australia and the Northern Territory. The new species is morphologically and biometrically compared with *M. longicarpus* to which it is most morphologically similar and which is its biogeographical congener to the east, and *M. occidentalis*, its biogeographical congener to the west. The paper also provides a key to help differentiate between the species of *Mictyris* described to date.

Terms and abbreviations, sampling sites, material examined and methods

The terms used here follow McNeill (1926), particularly for the cheliped where the wrist = carpus, palm = manus, immoveable finger = pollex, and moveable finger = dactyl.

Abbreviations:

\(\text{\textcopyright }\) = male, \(\text{\textcopyright }\) = female, \(\text{\textcopyright }\) = juvenile (unsexed), ovig. = ovigerous, AM = Australian Museum, NTM = Northern Territory Museum, WAM = Western Australian Museum, VCSRG = V & C Semeniuk Research Group, max = maximum. Other abbreviations employed in this paper are shown in Table 1.

Sampling sites:

Specimens for this paper derive from 11 sites in various locations in Western Australia and the Northern Territory (this study), and 6 sites whose specimens are housed in the Australian Museum, Northern Territory Museum and the Western Australian Museum (Fig.1 and Table 2; all co-ordinates in WGS84 system).

Material examined for description, comparisons and biometric study:

Morphological descriptions and comparisons in this study were based on: 1. *Mictyris* specimens from AM and WAM collections and 2. our collections now lodged with WAM and NTM. For *Mictyris darwinensis* sp. nov: and *Mictyris darwinensis* sp. nov: (formerly *Mictyris longicarpus*) material examined see Taxonomy section.
Table 1

Diagnostic characters and other abbreviations used in this paper

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal segment 1</td>
<td>straight line length of 1st abdominal segment measured along the mid-line</td>
<td>AS1L</td>
</tr>
<tr>
<td>Abdominal segment 6</td>
<td>length of 6th abdominal segment measured along the mid-line</td>
<td>AS6L</td>
</tr>
<tr>
<td>Abdominal segment 7 (=telson)</td>
<td>length of 7th abdominal segment measured along the mid-line</td>
<td>AS7L</td>
</tr>
<tr>
<td>Antero-lateral spines interspace</td>
<td>distance between inner bases of antero-lateral spines</td>
<td>ALSI</td>
</tr>
<tr>
<td>Body Height</td>
<td>vertical distance between top of carapace and lowest point on abdomen</td>
<td>BH</td>
</tr>
<tr>
<td>Carapace anterior to posterior</td>
<td>length between front and edge of posterior border of carapace (not including setae)</td>
<td>CL</td>
</tr>
<tr>
<td>Carapace lateral dimensions</td>
<td>distance between widest point of branchial regions</td>
<td>CW</td>
</tr>
<tr>
<td>Cheliped carpus anterior to posterior</td>
<td>straight line distance between top of wrist to distal end, along outer edge</td>
<td>CHCL</td>
</tr>
<tr>
<td>Cheliped carpus distal edge</td>
<td>length of distal edge of wrist</td>
<td>CHCW</td>
</tr>
<tr>
<td>Cheliped dactyl</td>
<td>length of moveable finger</td>
<td>CHDL</td>
</tr>
<tr>
<td>Cheliped palm lower margin</td>
<td>length of palm on lower margin</td>
<td>CHPLlm</td>
</tr>
<tr>
<td>Cheliped palm upper margin</td>
<td>length of palm on upper margin</td>
<td>CHPLum</td>
</tr>
<tr>
<td>Cheliped pollex</td>
<td>length of immoveable finger</td>
<td>CHPOL</td>
</tr>
<tr>
<td>Cheliped palm</td>
<td>depth of palm</td>
<td>CHPW</td>
</tr>
<tr>
<td>Cornea</td>
<td>distance from top of eye to start of peduncle</td>
<td>COL</td>
</tr>
<tr>
<td>Cornea plus peduncle</td>
<td>distance from tip of cornea to base of peduncle</td>
<td>COL+PED</td>
</tr>
<tr>
<td>Eye interspace</td>
<td>distance between outer extremities of eyes</td>
<td>EI</td>
</tr>
<tr>
<td>Front lateral dimensions</td>
<td>horizontal distance across top of frontal lobe</td>
<td>FW</td>
</tr>
<tr>
<td>Front vertical dimensions</td>
<td>distance from the median point of the front, level with the eyes, to the point of the median lobe</td>
<td>FL</td>
</tr>
<tr>
<td>Gonopods</td>
<td>first gonopods</td>
<td>G1</td>
</tr>
<tr>
<td>Gastric region lateral dimensions</td>
<td>width of gastric region</td>
<td>GW</td>
</tr>
<tr>
<td>Median carapace dimensions</td>
<td>width of middle part of carapace (mid-branchial region)</td>
<td>MCW</td>
</tr>
<tr>
<td>Posterior border caudal margin</td>
<td>width of rear carapace border from corner to corner</td>
<td>PBW</td>
</tr>
<tr>
<td>3rd maxilliped</td>
<td>total length of 3rd maxilliped from top of merus to bottom of ischium</td>
<td>3MTL</td>
</tr>
<tr>
<td>3rd maxilliped merus</td>
<td>central length of merus</td>
<td>3MML</td>
</tr>
<tr>
<td>3rd maxilliped ischium naked surface</td>
<td>central length of bare ischium surface</td>
<td>3MLns</td>
</tr>
<tr>
<td>3rd walking leg merus</td>
<td>length of part measured centrally</td>
<td>3WLML</td>
</tr>
<tr>
<td>4th walking leg dactyl</td>
<td>length of part measured centrally</td>
<td>4WLDL</td>
</tr>
<tr>
<td>4th walking leg propodus</td>
<td>length of part measured centrally</td>
<td>4WLPL</td>
</tr>
<tr>
<td>4th walking leg merus</td>
<td>length of part measured centrally</td>
<td>4WLML</td>
</tr>
</tbody>
</table>

Table 2

Sample sites & museum collections – Shirley Island, WA to Cape York, Qld

<table>
<thead>
<tr>
<th>Locality/Site</th>
<th>Latitude & Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shirley Island, NW Kimberley (WAM)</td>
<td>16° 16.589'S, 123° 26.502'E</td>
</tr>
<tr>
<td>Unwins Island, NW Kimberley (WAM)</td>
<td>15° 16.000'S, 124° 49.000'E</td>
</tr>
<tr>
<td>NE Kimberley Site 1, King George River (this study)</td>
<td>13° 56.142'S, 127° 16.531'E</td>
</tr>
<tr>
<td>NE Kimberley Site 2, King George River (this study)</td>
<td>13° 57.231'S, 127° 20.008'E</td>
</tr>
<tr>
<td>NE Kimberley Site 3, 5 km south of Berkley River, on mainland opposite Reverley Island (this study)</td>
<td>14° 23.199'S, 127° 47.755'E</td>
</tr>
<tr>
<td>NE Kimberley Site 4, bay West side of Buckle Head (this study)</td>
<td>14° 26.605'S, 127° 49.296'E</td>
</tr>
<tr>
<td>NE Kimberley Site 5, ~6 km SE of Buckle Head (this study)</td>
<td>14° 30.175'S, 127° 54.144'E</td>
</tr>
<tr>
<td>NE Kimberley Site 6, ~10 km SE of Buckle Head (this study)</td>
<td>14° 30.313'S, 127° 54.984'E</td>
</tr>
<tr>
<td>NE Kimberley Site 7, Cape Dussejour (this study)</td>
<td>14° 44.500'S, 128° 13.206'E</td>
</tr>
<tr>
<td>Buffalo Creek, Darwin, NT (this study)</td>
<td>12° 20.069'S, 130° 54.382'E</td>
</tr>
<tr>
<td>Lee Point, Darwin, NT (this study)</td>
<td>12° 19.827'S, 130° 53.648'E</td>
</tr>
<tr>
<td>Rapid Creek, Darwin, NT (this study)</td>
<td>12° 22.176'S, 130° 51.619'E</td>
</tr>
<tr>
<td>Mindil Beach, Darwin, NT (this study)</td>
<td>12° 26.850'S, 130° 49.678'E</td>
</tr>
<tr>
<td>Gove, NT (WAM)</td>
<td>12° 11.000'S, 136° 46.900'E</td>
</tr>
<tr>
<td>Groote Eylandt, NT (AM)</td>
<td>13° 56.000'S, 136° 36.000'E</td>
</tr>
<tr>
<td>north of Albany Passage, Cape York Qld (AM)</td>
<td>10° 44.000'S, 142° 36.000'E</td>
</tr>
<tr>
<td>Fly Point, Albany Passage, Cape York Qld (AM)</td>
<td>10° 45.000'S, 142° 57.000'E</td>
</tr>
</tbody>
</table>
Other Mictyris species material examined included:

Methods

Ten adult male M. darwinensis from Buffalo Creek in Darwin were compared with ten M. longicarpus and ten M. occidentalis adult male specimens obtained from WAM. M darwinensis adult males from four sites (Shirley Island, Site 6 NE Kimberley and Gove, Fig. 1), were also measured. Thirty characters, considered diagnostic, were used for the biometric study for species determination (Table 1), and were measured to the nearest 0.01 mm with a digital vernier caliper (DSE Model Q1382). Figure 2 of Unno (2008) shows the anatomical features used in this paper. Measurements of features (e.g., leg, eye) were obtained on the right side of the crab unless the feature was missing, in which case the left side was used. Averages were taken of the measurements for each group of crabs and these were used to determine ratios for the comparisons. Ratios of morphological features follows McNeill (1926) and Unno (2008), particularly for CW:CL, all 3rd maxilliped ratios, ALSI:PBW, CHPW:CHPLim, and FW:FL (Table 3).

Table 3

Ratios of morphological characters used in this paper

| Ratios following McNeill (1926): | CHCL:CHCW; CHCL:ALSI; CHPOL:CHPLlm; 4WLML:4WDL;
| CHCL:3MTL |

Additional ratio for this paper: CHCL:3MTL

Taxonomy

MICTYRIDAE Dana, 1851
Mictyris Latrielle, 1806
Type species: Mictyris longicarpus Latielle 1806
Mictyris darwinensis, sp. nov. (Figure 2)

Material examined

Paratypes:

NTM Cr016968: 10 ♂♂ (CL 15.13–13.01 mm), 1 ♀ (CL 11.38 mm) Buffalo Creek, Darwin, Northern Territory, Dec. 2009; NTM Cr016969: 5 ♂♂ (CL 12.79–11.85 mm), 5 ♀♀ (CL 11.28–9.66 mm) Leed Peak, Darwin, NT Dec 2009; NTM Cr016970: 5 ♂♂ (CL 11.28–9.66 mm), 3 ♀♀ (CL 8.75–8.25 mm) Rapid Creek, Darwin, NT Dec 2009; NTM Cr016971: 8 ♂♂ (CL 12.57–7.58 mm), 2 ♀♀ (CL 19.29, 8.35 mm) Mindil Beach, Darwin, NT Dec 2009; WAM 47065: 1 ♂ (CL 10.24 mm), 2 ♀♀ (CL 9.27, 9.23 mm), 1 J (CL 6.76 mm), Site 1 King George River, NE Kimberley, 13° 56.142’S 127° 16.531’E; WAM 47066: 2 ♂♂ (CL 12.23, 10.57 mm) Site 2 King George River, NE Kimberley, 13° 57.231’S 127° 20.808’E; WAM 47067: 1 ♂ (CL 7.01 mm), 5 J (CL 6.32–4.52 mm) Site 3 NE Kimberley, 5 km S of Berkley Rv on mainland, opp. Reverley Is., 14° 21.999’S 127° 47.755’E; WAM 47068: 9 ♂ (CL 5.60–4.00 mm) Site 4 NE Kimberley, bay W side of Buckle Head, 14° 26.605’S 127° 49.296’E; WAM 47069: 1 ♂ (9.20 mm), 2 J (CL 5.22, 4.83 mm) Site 5 NE Kimberley, ~ 6 km SE of Buckle Head 14° 30.175’S 127° 54.144’E; WAM 47070: 10 ♂♂ (CL 14.13–12.48 mm), 3 ♀♀ (CL 11.70, 9.95, 9.86 mm), Site 6 NE Kimberley, ~ 10 km SE of Buckle Head, 14° 30.313’S 127° 54.984’E; WAM 47071: 4 ♀♀ (CL 8.77–7.14 mm), 2 J (CL 5.55, 4.63 mm), Site 7 Cape Dussejour, NE Kimberley, 14° 44.500’S 128° 13.206’E.
Mictyris darwinensis sp. nov: (formerly Mictyris longicarpus) AM P8422: 2 ♂♂ (CL 15.41, 14.00 mm) east side of Groote Eylandt NT 1921; AM P45643: 53 ♂♂ (CL 15.50–12.11 mm), 18 ♀♀ & 1 ovig. (12.90–9.91 mm) mainland north of Albany Passage QLD 1928; AM P45382 1 ♂ (CL 13.61 mm), 1 ♀ (CL 12.37 mm) Fly Point Albany Passage QLD 1928; WAM C19115: 3 ♂♂ (CL 14.42–10.57 mm), 3 ♀♀ (12.65–11.83 mm) Shirley Island WA 1988; WAM C19116: 4 ♂♂ (CL 15.38–12.01 mm), 2 ♀♀ (CL 11.54–11.05), NW of Unwins Island, north Kimberley, WA, 1988; WAM C39395: 6 ♂♂ (CL 18.18–10.26 mm), 5 ♀♀ (12.27–10.51), 1 ovig. (10.31 mm) West Woody Island Creek Gove, NT, 1982.

Diagnosis

Visibly smooth sub-globular carapace with prominent, straight, antero-lateral spines and microscopically granular associated ridges, and a truncated, slightly downward projecting posterior border Eyes relatively small, and front relatively narrow (eyes smaller than the large globular eyes of the type species, and front similar to the type species). Two parallel spines present on the distal end of the cheliped merus ventral surface. Cheliped smooth, relatively slender, long in the carpus, with a small palm and long fingers. Moveable finger with broad, triangular tooth. Distal end of the dorsal ridge on walking leg carpus spinated and terminated with sharp projecting spine and dactyl of the fourth walking leg is straight with a curved apex. Abdominal flap relatively broad (broader than type species). In vivo carapace colouration: brown branchial regions, light blue elsewhere including 3rd maxillipeds, white posterior border (Fig. 2). Legs pale and uniform in colour.

Description of male holotype

Body: Sub-globular (Fig. 3A), 1.2 times longer than wide. Branchial regions slightly inflated but not overlapping bases of ambulatory limbs. Posterior border of carapace truncated, straight and conspicuously produced beyond curve of abdomen, projecting downwards rather than outwards; posterior border width equals the interspace between the antero-lateral spines.

Figure 2. A. Field photograph showing swarm of M. darwinensis, with their distinctive colouration of very pale blue (nearly white) carapace and reddy brown branchial regions (Site 6, ~10 km SE of Buckle Head, north-eastern Kimberley Coast). The distinctive white posterior border is evident. B. Soldier crabs retrieved on 3 mm mesh sieve to show the range of colouration of the species, from very pale blue (nearly white) carapace and reddy brown branchial regions to steel blue carapace and reddy brown branchial regions to dark carapace (Buffalo Creek, NT).

Figure 3. A. Dorsal view of the holotype showing the medium-sized eyes, smooth carapace, the conspicuously projecting posterior border, the small spine on the end of a walking leg carpus (one is arrowed), and the straight dactyl of the 4th walking leg. B. Front of the holotype showing microscopically granulated anterior part of carapace, the narrow front, and the straight antero-lateral spines.
spines; and length of sides are one fifth the width of border.

Carapace: Visibly non-granular, and smooth to touch (Fig. 3A). Gastric and branchial regional grooves well-defined. Branchial regions microscopically evenly granular. Sub-hepatic regions visible from above and sparsely granular; sub orbital border granulated; antero-lateral spines prominent (Figs 3A and 3B), orientated upwards (not recurved), microscopically granular at bases; a microscopically granular ridge extends posteriorly from base of each antero-lateral spine to branchial regions and another very short, microscopically granular ridge extends downwards towards the sub-hepatic regions; interspace between antero-lateral spines is less than the distance between the outside of the eyes, equal to the width of the posterior border and less than the width of the space between the mid branchial regions. Front deflexed and narrow (as for type species), although slightly narrower with length slightly longer (1.4 times) than the width (Fig. 3B).

Eyes: Globose, medium-sized (smaller than in the type species); the space between the outside of the eyes (Fig. 3B) slightly greater (1.2 times) than the width of the posterior border and equal to the mid carapace width; cornea tipped with several long setae; cornea length is circa one third of total length of cornea plus peduncle.

Epistome: Width is one third the length, as in type species.

Third maxillipeds: Large, length of merus is less than half the length of the naked surface of the ischium as in the type species.

Thoracic sternite: Anterior edge of thoracic sternite under 3rd maxillipeds with two broad flat spines.

Cheliped (Fig. 4A): Slender with moderately large spine on each ischium directed forwards and inwards. Ventro-distal margin of merus armed with two spines; outer spine larger, inwardly curving with several spinules at the base; inner smaller spine is slightly lower (more proximal), straight, apically blunt, with one or two spinules at the base. As in the type species, cheliped surfaces are smooth and microscopically granular, with scarcely granular ridges and sparsely setose grooves. Carpus long and slender (1.5 times the length of the antero-lateral spine interspace). Palm more slender than typical form- width (depth) is half the length of the immovable finger and is almost equal to length of the lower margin; dorsal margin of palm is 0.15 times the length of the palm lower margin plus immovable finger. Immovable finger inner cutting edge armed by at least 10 irregular to rounded small teeth proximal to the palm. Immovable finger length is twice length of the lower border of palm. Moveable finger equipped with broad, conical, flat tooth; moveable finger slightly shorter than wrist but 1.11 times longer than immovable finger; moveable finger more curved than immovable finger and fingers meet as in typical form, slightly below tips.

Abdomen (Fig. 4B): Abdominal flap relatively broad (broader than type species; ratio of 5th somite width: 3rd.

6th somite length = 1.4:1, compared with 1.2:1 in *M. longicarpus*). First segment long and flat with a short steep lip at the articulation with the posterior border; successive segments increase in width to the 5th segment then decrease in width; the 6th segment is 4/5th length of the telson.

Ambulatory limbs: Long and slender; moderately setose; minutely granular along ridges and some transverse minutely granular rugae on meri; distinctive sharp small spine terminating distal end of carpus dorsal ridge, best developed on 2nd and 3rd walking legs where the carpus dorsal ridge is spinated towards distal end (Fig. 3A); merus of 3rd walking leg 1.10 times longer than

Figure 4. Key features of *M. darwinensis*. A. Right cheliped with two non-parallel spines (arrowed), one large, one small, on distal margin of the merus ventral surface. B. Abdomen with broad 5th segment and long, flat 1st segment.
1st-6th abdominal segments; 4th walking leg dactyl long and curved at tip.

Gonopod G1 (Fig. 5): Shaft stout, torsioned tip with very long, dense setae on ventral callosity; shorter dense setae asymmetrically line the interior of the laterally-facing, well-developed spatuloid cavity beneath the slightly overturned crest; a horizontally orientated, ungual, blunt chitinous structure projects from the centre of the crest. G1 length extends from 3rd to 6th abdominal segments.

Colour: When alive, body is coloured very light blue dorsally and on the third maxillipeds, with reddish-brown branchial regions, and a distinctive white posterior border. All limbs, including chelipeds are uniformly pale coloured, with no red bands on the joints.

Habitat
Sheltered, low to medium wave energy environments with fine to medium, sandy to slightly muddy sand substrates. Gently sloping intertidal shore zones including low gradient beaches, mid tidal shoals, tidal creek banks, and tidal creek shoals (cf., Unno & Semeniuk 2009).

Behaviour
A benthic, cryptic species, generally inhabiting the substrate to a depth of 10–15 cm (at low tide). Females are more cryptic than males, rarely appearing on the surface. Subterranean feeding and emergence or re-entry activities by crabs at low tide produces pustules, tunnels, and rosettes of worked substrate on the tidal-flat surface, and exit holes (Unno & Semeniuk 2008). Large numbers of crabs (predominately adult males) may emerge at low tide to commence surface feeding.

Distribution
Tropical northern Australia (Fig. 1). Recorded along the coast of Western Australia, Northern Territory and Queensland, from Shirley Island 12° 20.069’S, 130° 54.382’E (WAM C8038) to Albany Passage Cape York 10° 45.000’S, 142° 37.000’E (AM P45382). McNeill (1926) mentions male Mictyris specimens from Groote Eylandt having twin spines on the lower margin of the merus of the cheliped, distinctive of M. darwinensis. It was confirmed that M. darwinensis occurs at Groote Eylandt by examining the AM P8422 collection. While M. darwinensis appears to be the only soldier crab species in the Kimberley and Northern Territory regions, there were other soldier crab species present in the AM P45643 collection from Cape York, Queensland.

Etymology
The species name is derived from the City of Darwin (named after Charles Robert Darwin), Northern Territory, which appears to be the centre of its biogeographic distribution, and the designated type location of the new species.

Variation
There is some variation in the development and number of spines on the inner cheliped merus where less mature males may have two parallel spines on one cheliped and only one on the other, or one outer spine and an inner small-to-microscopic spineule may be present. Also, in younger males the cheliped tooth is less developed. Carapace colouring shows some variation, with very pale blue adult specimens observed in the NE Kimberley region and specimens from Gove, NT appearing darker blue.

Remarks
Examination of the allotype shows that sexual dimorphism occurs with the following characteristics: females smaller than males of the same age; often darker colour than males; granules on antero-lateral spine ridges, subhepatic region and 3rd maxillipeds with short setae; no tooth on cheliped moveable finger; two spines on cheliped merus reduced to spineules; 3rd maxilliped thoracic sternite unarmed; terminal spine on walking leg carpus much reduced; gonopore with prominent simple spine.

Figure 5. Gonopods of M. darwinensis, M. longicarpus, and M. occidentalis showing ventral (sternal) side views.
Morphological and biometric comparison of *M. darwinensis*, *M. longicarpus* and *M. occidentalis*

In describing *M. darwinensis*, emphasis was placed on distinguishing the new species from two other described *Mictyris* species: one that appears superficially similar, *i.e.*, the type form, *M. longicarpus*, and the other, the allopatric species to the west, *M. occidentalis*. *M. darwinensis* exhibits some characters which appear similar to those of *M. longicarpus* and to *M. occidentalis*, however, close examination shows distinct differences. For example, both *M. longicarpus* and *M. darwinensis* have projecting carapace posterior borders when viewed dorsally, but are morphologically different when viewed ventrally (the 1st abdominal segment is flatter in *M. darwinensis*), or laterally (profile of *M. darwinensis* is less rounded). Biometric ratios were useful in separating the new species from congeners (Table 4). Features of gonopods and gonopores are described below and compared in Tables 5 & 6, respectively, and Figure 5. The major morphological features of the three *Mictyris* species are systematically compared in Table 7.

Table 4

Comparisons of major biometric ratios

<table>
<thead>
<tr>
<th>Biometric ratios</th>
<th>M. darwinensis</th>
<th>M. longicarpus</th>
<th>M. occidentalis</th>
<th>Explanation of ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL:CW</td>
<td>1.20:1</td>
<td>1.23:1</td>
<td>1.21:1</td>
<td>branchial regions of M. darwinensis and M. occidentalis slightly more inflated than those of M. longicarpus</td>
</tr>
<tr>
<td>ALSIPB</td>
<td>1.02:1</td>
<td>1.24:1</td>
<td>1.22:1</td>
<td>the antero-lateral spines interspace equals the length of the posterior border in M. darwinensis and is slightly greater in M. longicarpus and M. occidentalis</td>
</tr>
<tr>
<td>COL:COL + PED</td>
<td>0.35:1</td>
<td>0.52</td>
<td>0.33:1</td>
<td>M. darwinensis and M. occidentalis have smaller eyes than M. longicarpus</td>
</tr>
<tr>
<td>EILPBW</td>
<td>1.20:1</td>
<td>1.24:1</td>
<td>1.14:1</td>
<td>M. darwinensis carapace ratios same as in M. longicarpus</td>
</tr>
<tr>
<td>EI:MCW</td>
<td>1.08:1</td>
<td>1.03</td>
<td>0.91</td>
<td>M. darwinensis carapace ratios same as in M. longicarpus</td>
</tr>
<tr>
<td>FW:FL</td>
<td>0.70:1</td>
<td>1:1</td>
<td>0.80:1</td>
<td>M. darwinensis front narrower than M. longicarpus or M. occidentalis</td>
</tr>
<tr>
<td>CHCL:ALSI</td>
<td>1.50:1</td>
<td>1.51:1</td>
<td>1.30:1</td>
<td>wrist length is 1 1/2 times antero-lateral spine interspace in M. darwinensis and M. longicarpus but 1 1/2 times in M. occidentalis</td>
</tr>
<tr>
<td>CHCL:3MTL</td>
<td>0.88:1</td>
<td>0.75:1</td>
<td>–</td>
<td>length of M. darwinensis cheliped wrist slightly longer than M. longicarpus; M. occidentalis is not compared since the 3rd maxilliped ratios are different</td>
</tr>
<tr>
<td>CHCL:CHCW:</td>
<td>2.30:1</td>
<td>2.07:1</td>
<td>2.49:1</td>
<td>wrist length is 2 1/2 times wrist width in M. darwinensis, 2 times in M. longicarpus and ~ 2 1/2 times in M. occidentalis</td>
</tr>
<tr>
<td>CHPW:CHPOL</td>
<td>0.53:1</td>
<td>0.66:1</td>
<td>0.64:1</td>
<td>palm width 1/2 length of immovable finger in M. darwinensis but 1/3 in M. longicarpus and M. occidentalis</td>
</tr>
<tr>
<td>CHPW:CHPLm</td>
<td>0.94:1</td>
<td>0.90:1</td>
<td>0.80:1</td>
<td>the width of the palm equal to the length of the lower palm border in both M. darwinensis and M. longicarpus</td>
</tr>
<tr>
<td>CHDL:CHCL</td>
<td>0.90:1</td>
<td>0.90:1</td>
<td>0.82:1</td>
<td>moveable finger slightly shorter than wrist in M. darwinensis and M. longicarpus but distinctly shorter in M. occidentalis</td>
</tr>
<tr>
<td>CHPOL:CHCL</td>
<td>0.83:1</td>
<td>0.75:1</td>
<td>0.71:1</td>
<td>immovable finger is 1/6 length of wrist in M. darwinensis but 1/6 in M. longicarpus and M. occidentalis</td>
</tr>
<tr>
<td>3MML:3MIlns</td>
<td>0.41:1</td>
<td>0.44:1</td>
<td>0.56:1</td>
<td>M. darwinensis third maxillipeds are same as type species, M. occidentalis differs from type species</td>
</tr>
<tr>
<td>3MTL:ALSI</td>
<td>1.52:1</td>
<td>1.49:1</td>
<td>1.56:1</td>
<td>as above</td>
</tr>
<tr>
<td>3MTL:CHPLum</td>
<td>1.07</td>
<td>0.94</td>
<td>1.18:1</td>
<td>as above</td>
</tr>
<tr>
<td>4WLML:4WLDL</td>
<td>1.21</td>
<td>1.27</td>
<td>1.54</td>
<td>M. darwinensis & M. longicarpus have a longer dactyl than M. occidentalis</td>
</tr>
</tbody>
</table>
Table 5
Comparison of gonopod morphology

<table>
<thead>
<tr>
<th>Gonopod feature</th>
<th>M. darwinensis</th>
<th>M. longicarpus</th>
<th>M. occidentalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>shaft</td>
<td>relatively stout</td>
<td>stout</td>
<td>relatively stout</td>
</tr>
<tr>
<td>torsion of shaft</td>
<td>begins just before curve of tip</td>
<td>begins just before curve of tip</td>
<td>begins at midpoint of shaft</td>
</tr>
<tr>
<td>curvature of the tip of the shaft</td>
<td>curved with moderate hooked tip</td>
<td>curved with short hooked tip</td>
<td>curved with extended tip</td>
</tr>
<tr>
<td>shape of the chitinous structure</td>
<td>bluntly ungual</td>
<td>bluntly ungual</td>
<td>long and triangular</td>
</tr>
<tr>
<td>location of the chitinous structure</td>
<td>below the apex of the curvature of the tip</td>
<td>below the apex of the apical curvature of the tip</td>
<td>in line with the apex of curvature of the tip</td>
</tr>
<tr>
<td>orientation of the chitinous structure, viewed sterno-laterally</td>
<td>horizontal</td>
<td>slightly angled with lower end towards sternal (ventral) side of gonopod</td>
<td>markedly angled with higher end towards sternal (ventral) side of gonopod (opposite direction to M. longicarpus)</td>
</tr>
<tr>
<td>concavity of the apical spatuloid shape</td>
<td>well developed</td>
<td>moderately developed</td>
<td>well developed</td>
</tr>
<tr>
<td>keels</td>
<td>prominent</td>
<td>prominent</td>
<td>prominent</td>
</tr>
<tr>
<td>furrows</td>
<td>shallow</td>
<td>well developed</td>
<td>well developed</td>
</tr>
<tr>
<td>setae</td>
<td>along shaft and very long on inner callosity</td>
<td>along shaft and well developed at tip</td>
<td>along shaft and well developed at tip</td>
</tr>
<tr>
<td>length</td>
<td>from 3rd abdominal segment to just above 6th abdominal segment (not always visible)</td>
<td>from 3rd abdominal segment to below top of 6th segment (not always visible)</td>
<td>from 3rd abdominal segment to just above 6th segment (visible)</td>
</tr>
</tbody>
</table>

Table 6
Comparison of gonopore morphology

<table>
<thead>
<tr>
<th>Gonopore feature</th>
<th>M. darwinensis</th>
<th>M. longicarpus</th>
<th>M. occidentalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>size of spur</td>
<td>large</td>
<td>large</td>
<td>small</td>
</tr>
<tr>
<td>shape of spur</td>
<td>simple, dentoid, blunt tip</td>
<td>multifurcate, dentoid, blunt tip</td>
<td>simple, dentoid, blunt tip</td>
</tr>
<tr>
<td>setae</td>
<td>sparse fringe</td>
<td>dense short fringe at end</td>
<td>sparse fringe</td>
</tr>
</tbody>
</table>

Gonopods: The key features that help to distinguish between the three species are: beginning point of torsion on shaft (viewed on the anterior surface); extent of curvature of the tip of the shaft; shape, location and orientation (viewed sterno-laterally) of the apical chitinous structure; development of the concavity of the apical spatuloid shape; development of the keel; and development of the longitudinal furrow. The gonopods of the three *Mictyris* species examined in this study show some discernible differences (Fig. 5) particularly in the shape and orientation of the chitinous structure and the development of the apical spatuloid cavity. The gonopod of *M. darwinensis* exhibits the greatest development of the concavity in the apical spatuloid shape. Viewed ventrally, the gonopod apex of *M. darwinensis* has greater similarity with *M. occidentalis* than with *M. longicarpus* in that the apex of the distal curve is longer, but has more affinity to *M. longicarpus* with its prominent keels and furrows. A comparison of the gonopods of the three species is provided in Table 5.

Gonopores: Gonopores of the three species share the same feature common to the genus of being a cavity overhanging on the mesial side with a projection or spur formed from the end of the 3rd sternal segment. *M. darwinensis* gonopores have greater similarity with those of *M. longicarpus* than those of *M. occidentalis*. (Table 6).

A summary of the major morphological similarities and differences of the three *Mictyris* species considered in this study is presented in Table 7 below.